-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcenote_virus_segments_V6.py
309 lines (250 loc) · 11.5 KB
/
cenote_virus_segments_V6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import itertools, sys, os
import csv
import glob
import numpy as np
import pandas as pd
import statistics
from statistics import mean
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
import math
from itertools import tee
import collections
####define scoring scheme and important variables
id_list = ['V','X','Y','Z']
score_list = [10,5,-3,0]
keys = id_list
values = score_list
domain_dictionary = dict(zip(keys,values))
threshold = 0
window = 5000
sliiiiiide_to_the_right = 50
#Let's loop!
file1 = sys.argv[1]
with open(file1, 'r') as file:
print('Running file: '+ file.name)
count=0
count_start=-sliiiiiide_to_the_right
x_temp = list(file.read())
x = x_temp[:-1] #delete "/n" that's at the end of the list because we read in the file not explicitly the line
total_len = int(len(x))
#resume!
letter_list = [domain_dictionary[k] for k in x] #convert to scores
seq_score_nope = sum(letter_list)
#avg_score = mean(letter_list)
blocks = int(((len(x) - window) / sliiiiiide_to_the_right) + 1)
blocks_2 = blocks + 2 #need this otherwise the last (incomplete/little) block will be cut off!
#print("you will have " + str(blocks_2) + " windows")
cols = ['Window', 'Position start', 'Position stop','Pass/Fail', 'Score', 'V_count', 'X_count', 'Z_count', 'Y_count']
dat = pd.DataFrame(columns = cols)
#
for i in range(0, blocks_2 * sliiiiiide_to_the_right, sliiiiiide_to_the_right):
score_result = sum(letter_list[i:i+window])
new_let_list = x[i:i+window]
if score_result >= 0 :
PF_result = "pass"
else:
PF_result = "fail"
#counts for later
V_count = new_let_list.count('V')
X_count = new_let_list.count('X')
Z_count = new_let_list.count('Z')
Y_count = new_let_list.count('Y')
#vars for count columns
count = count +1
count_start += sliiiiiide_to_the_right #same as c_s = c_s + siiii...
count_stop = count_start+window
#dat.index.name = 'Window'
#let's plot things!
dat = dat.append({'Window': count,'Position start' : count_start, 'Position stop': count_stop,'Pass/Fail': PF_result, 'Score': score_result, 'V_count': V_count,
'X_count': X_count, 'Y_count': Y_count, 'Z_count': Z_count},ignore_index=True)
#dat.index.name = 'Window'
outname = (str(file.name)+".tableout.tsv")
#dat.to_csv(outname, sep='\t', index=False)
#FIGURES
pdf_outname = (str(file.name)+".figures.pdf")
#Character ocunts plot
#figures = PdfPages(pdf_outname)
dat.to_csv(outname, sep='\t', index=False)
#MAIN DATAFRAME CREATED, STORED IN DAT
#Now let's make the smoothed plot
df_0 = dat
#median_0 = df_0['Annotation'].median()
x = df_0['Window']
y = np.array(df_0['Score'])
l = df_0['Window'].count()
df_empty = pd.DataFrame(index=range(l),columns=range(1))
for col in df_empty.columns:
df_empty[col].values[:] = 0
zero=df_empty[0]
def smooth(y, box_pts):
box = np.ones(box_pts)/box_pts
y_smooth = np.convolve(y, box, mode='same')
return y_smooth
#smooth_val == box_plts
smooth_val = 100 #####we can change this if we want!
#statement for handling short sequences (error called if len(y) < smoothing value)
if len(y) <= smooth_val:
smooth_val = (0.5 * len(y))
else:
smooth_val = smooth_val
smoth = smooth(y,smooth_val)
idx = np.argwhere(np.diff(np.sign(zero - smoth))).flatten()
df = pd.DataFrame(zero[idx])
df = df.reset_index()
#we will save to figures, but first we need to do the validation steps
#This is for validating if region is + or -
df.loc[-1] = 1 # adding a row for first position
df.index = df.index + 1 # shifting index
df = df.sort_index()
#df.iloc[-1] = len(y)
#last position as last row
#print(df['index'])
df.sort_values(by=['index']) #need to sort first otherwise +1 belwo will break things
new_list = pd.DataFrame(df['index'] + 1) #df['index'][:-1] + 1 #add +1 to all for next position is +/-, except for last position, will throw erre - so it deletes it, we'll add it in later
#print(new_list)
#the_val_to_add = df.iloc[-1] - 1
#new_list = new_list.append(df.iloc[-1] - 1) #beacuse of +1 transformation few lines above
new_list_2 = new_list['index']
#new_list = new_list.append(last_val_to_append, ignore_index=True)
new_y_val = list(smoth[new_list]) #find position y on smooth line
#assigning pos / neg for that +1 position
pos_neg_results = []
for i in new_y_val:
if i > 0:
result = '+'
else:
result = '-'
pos_neg_results.append(result)
#pos_neg_results.append('N/A') #the last value needs this - not anymore
#print(pos_neg_results)
#creating dataframe for next steps
df.drop(df.columns[len(df.columns)-1], axis=1, inplace=True) #to delete last column, unnamed so tricky to get rid of (?) this does it tho
df['+/- to the right'] = pos_neg_results
#print(df['+/- to the right'])
#append +/- and start stop coords from original table
df.rename(columns={'index': 'Window'}, inplace=True)
df['Window']=df['Window'].astype(int)
df_0['Window']=df_0['Window'].astype(int)
merged_df = df.merge(df_0, how = 'inner', on = ['Window'])
merged_df = merged_df.drop(['Pass/Fail','Score','V_count','X_count','Z_count','Y_count'], axis = 1)
merged_df['Chunk_end'] = 'none'
merged_df['Window midpoint'] = merged_df.iloc[:,[2,3]].median(axis=1)
merged_df['Window midpoint'] = merged_df['Window midpoint'].astype(int)
#df edits to accomodate this:
#we are duplicating the last row of the df to handle a trailing + chunk (w/ no y=0 intercept to close the chunk)
merged_df = merged_df.append(merged_df[-1:])
#now need to make it read actual last stop position (this os not rounded per window like the other coords)
merged_df = merged_df.replace(merged_df.iloc[-1][3],(total_len+1))
print(merged_df)
#now let's get the coordinates for the > 0 'chunks'
#iterate over for true hit testing
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
#file name to be used later
actual_file_name_temp = str(file.name[:-17])
#this is to define the chunks, accounting for all the ways the graph can look
#note: leading and trailing here mean a chunk at the start or end of the graph that
ddf_list = []
for (i1, row1), (i2, row2) in pairwise(merged_df.iterrows()):
#for a leading chunk
if row1['+/- to the right'] == '+' and \
row1["Position start"] == 0 and \
row1["Position stop"] != (total_len + 1):
ddf = ["Chunk_" + str(i1), row1["Position start"], row2["Window midpoint"]]
ddf_list.append(ddf)
#for a contained chunk
if row1['+/- to the right'] == '+' and \
row1["Position start"] != 0 and \
row1["Position stop"] != (total_len + 1):
ddf = ["Chunk_" + str(i1), row1["Window midpoint"], row2["Window midpoint"]]
ddf_list.append(ddf)
#3. for a trailing chunk
if row1['+/- to the right'] == '+' and \
row1["Position start"] != 0 and \
row1["Position stop"] == (total_len + 1): #old = merged_df.iloc[0,3]
ddf = ["Chunk_" + str(i1), row1["Window midpoint"], row2["Position stop"]]
ddf_list.append(ddf)
#4. for graphs with no leading and no trailing chunk (for graphs with no y = 0 intercept -> this is is
#a differently-defined statemnt below b/c the empty file gets appended w/ stuff above from older files when
#it's in the loop, ALSO the criterion gets fulfilled by contained cunks which means duplicate csv rows for chunks (defined diffrently to specifiy the rules)
if merged_df.iloc[0,1] == '+' and \
merged_df.iloc[0,2] == 0 and \
merged_df.iloc[0,3] == (total_len + 1): #if first column last(2nd row) == last -1 then its one chunk
rep_list = [('Chunk_0', '0', (total_len+1))]
ddf_list = rep_list
else:
ddf_list = ddf_list
#print(merged_df)
#print(ddf_list)
#make chunk csv
df = pd.DataFrame(ddf_list)
this_name = str(file.name+"_chunk_coordinates.csv") #used to be fna_name
df.to_csv(this_name, index = False)
###Find optimal location on plot to place validation marker
#read in virus table
#file_name_just_stem = file.name[:-4]
vir_bait_table = str(actual_file_name_temp+'.VIRUS_BAIT_TABLE.txt')
with open(vir_bait_table, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter='\t')
lines = list(reader)
vir_bait_table = pd.DataFrame(lines)
vir_bait_table['median'] = round(vir_bait_table[[1,2]].median(axis=1))
vir_bait_table_med_list = list(vir_bait_table['median'])
#print(vir_bait_table_med_list)
points_list = []
for item in vir_bait_table_med_list:
eq = round(((item - 2500) + 50) / 50)
if eq >= len(x):
plot_point = (len(x) - 1) #1 because it can't = len, has to be less
else:
plot_point = eq
#plot_point = round(((item - 2500) + 50) / 50) #this must stay at = window length (not half like we had talked about, it makes illogical values...basically if the coordinate is towards the end, applying a window 'inbetween' can be out of bounds)
points_list.append(plot_point)
new_points_list = [1 if i <=0 else i for i in points_list]
#print(points_list) #each item represents/is the best/closet window that captures the viral hallmark region
zero=df_empty[0]
figures = PdfPages(pdf_outname)
x2 = (points_list)
plt.plot(x, y, 'o', ms=0.6)
plt.axhline(0, 0, l)
#plt.plot(x, smooth(y,3), 'r-', lw=2)
#p = smooth(y,100)
plt.plot(x, smooth(y,100), 'c', lw=2)
plt.plot(x, smooth(y,100), 'y', markevery = (new_points_list), ms=11.0, marker = '*')
plt.title("Viral region calls")
plt.xlabel('Window')
plt.ylabel('Score')
plt.rc('axes', titlesize=6.8) # fontsize of the axes title
plt.rc('xtick', labelsize=5) # fontsize of the tick labels
plt.rc('ytick', labelsize=5) # fontsize of the tick labels
plt.rc('legend', fontsize=5) # legend fontsize
plt.rc('figure', titlesize=8) # fontsize of the figure title
plt.grid(True)
idx = np.argwhere(np.diff(np.sign(zero - smooth(y,100)))).flatten()
plt.plot(x[idx], zero[idx], 'ro', ms=5.0)
#plt.plot(x[idx], zero[idx], markevery= (points_list), ms=9.0, marker = 'X', color = 'y')
#plt.plot()
df = pd.DataFrame(zero[idx])
plt.plot()
plt.savefig(figures, format='pdf')
plt.close()
df = df.reset_index()
#print(df)
mycol = (["#e7ba52", "#637939", "#7b4173", "#d6616b"])
dat[['V_count','X_count','Y_count','Z_count']].plot(color = mycol) #same = dat.plot(y=['X_count','N_count','R_count','V_count']) , plt.show() plt.grid(True)
plt.grid(True)
plt.xlabel('Window')
plt.ylabel('Count')
plt.title('Character counts')
plt.rc('axes', titlesize=6.8) # fontsize of the axes title
plt.rc('xtick', labelsize=5) # fontsize of the tick labels
plt.rc('ytick', labelsize=5) # fontsize of the tick labels
plt.rc('legend', fontsize=5) # legend fontsize
plt.rc('figure', titlesize=8) # fontsize of the figure title
plt.savefig(figures, format='pdf')
plt.close()
figures.close()