-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.yaml
53 lines (47 loc) · 1.42 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# path:
# Path to dataset which subdirectories corresponding to target labels (e.g. positive/negative).
# training/validation_pct:
# % of training/validation subsets after train_test_split.
# Test set % will be calculated as (1 - training_pct - validation_pct).
dataset:
path: "D:/GitHub/datasets/crack-detection"
# path: "D:/GitHub/datasets/SDNET2018/pavements"
training_pct: 0.8
validation_pct: 0.1
# Configuration for Neptune logger.
# offline_mode:
# Set to True will send log data to Neptune, turn it off when only debugging.
neptune:
offline_mode: False
project_name: 'mtszkw/surface-crack-detect'
experiment_name: 'Transfer-learning (AlexNet)'
# Optimizer parameters
optimizer:
lr: 0.0005
amsgrad: False
# Scheduler parameters
scheduler:
step_size: 1
gamma: 0.8
# Training
# use_gpu:
# Passed to pytorch_lightning.Trainer as number of GPUs to be used for training.
# max_epochs:
# Maximum number of training epochs
# batch_size:
# Batch size
# val_check_interval:
# Contols how often validation set should be used (if float = % epochs, if int = # steps).
training:
use_gpu: 1
max_epochs: 5
batch_size: 64
val_check_interval: 0.2
# Debug features
# train/val/test_percent_check:
# Used in pytorch_lightning.Trainer.fit method, allows to use only a % of training/validation/test set.
# Useful for quick runs.
debugging:
train_percent_check: 1.0
val_percent_check: 1.0
test_percent_check: 1.0