-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathregiongrowingnormalsOct.m
187 lines (155 loc) · 6.43 KB
/
regiongrowingnormalsOct.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [Regions2] = regiongrowingnormalsOct (ptCloud,normals2,h,binCapacity)
% REGIONGROWINGNORMALSOCT
%
% Function to perform region growing on a point cloud, based on computed
% normal and curvature values. This function is based on octree bins and is
% therefore much faster than REGIONGROWINGNORMALS. The octree division
% operation used the OcTree Matlab toolbox from Sven Holcombe (2013).
%
% See also:
% - REGIONGROWINGNORMALS
%
% Inputs:
% - ptCloud: point cloud data
% - normals2: normals of each point. Compute with pcnormals
% - h: mean curvature of each point. Compute using Beksi (2014)
% - binCapacity: number of points in each octree bin; default is 20
%
% Outputs:
% - Regions2: a struct containing the segmented regions.
%
% (c) Arnadi Murtiyoso (INSA Strasbourg - ICube-TRIO UMR 7357)
if nargin==0, help(mfilename), return, end
if nargin<4, binCapacity=20; end
labels=zeros(ptCloud.Count,1);
labels(:,1)=1;
OT = OcTree(ptCloud.Location,'binCapacity',binCapacity);
% % OPTIONAL: plot the octree bins created from the previous operation
% figure ('name','Octree Bins')
% pcshow(ptCloud,'MarkerSize',20)
% hold on
% boxH = OT.plot;
% cols = lines(OT.BinCount);
% dim = [.2 .5 .3 .3];
% for i = 1:OT.BinCount
% set(boxH(i),'Color',cols(i,:),'LineWidth', 1+OT.BinDepths(i))
% end
% doplot3 = @(p,varargin)plot3(p(:,1),p(:,2),p(:,3),varargin{:});
% create a list of octree bins with points inside
[binsIsi, ~, indexBin] = unique(OT.PointBins);
[r,~]=size(binsIsi);
% initialise variables
% NAvg is a lookup table with column order: binID, median of Nx, median of
% Ny, median of Nz, median of mean curvature (h), and standard deviation of
% mean curvature (h)
NAvg=zeros(r,6);
% binCentroid is the XYZ coordinates of the bins' center
binCentroid=zeros(r,3);
% start loop for each bin
for i=1:r
% get the current bin's centroid coordinates
% note: in BinBoundaries, the order of the columns is Xmin, Ymin, Zmin,
% Xmax, Ymax, Zmax
binCentroid(i,1)=(OT.BinBoundaries(binsIsi(i),4)+ ...
OT.BinBoundaries(binsIsi(i),1))/2;
binCentroid(i,2)=(OT.BinBoundaries(binsIsi(i),5)+ ...
OT.BinBoundaries(binsIsi(i),2))/2;
binCentroid(i,3)=(OT.BinBoundaries(binsIsi(i),6)+ ...
OT.BinBoundaries(binsIsi(i),3))/2;
% get the current bin's ID and put it in NAvg's first column
NAvg(i,1)=binsIsi(i);
% find the indices of the points located inside the current bin
indexBin2=find(binsIsi==NAvg(i,1));
isiBin=find(indexBin==indexBin2);
% loop to get the normals of the points inside the current bin
[r2,~]=size(isiBin);
for j=1:r2
nx(j)=normals2(isiBin(j),1);
ny(j)=normals2(isiBin(j),2);
nz(j)=normals2(isiBin(j),3);
% ...and their curvature also, while you're at it
ho(j)=h(isiBin(j));
end
% compute the "normal" of the bin, from the median of the
% normals of the points inside the bin (get it?)
nx_median=median(nx);
ny_median=median(ny);
nz_median=median(nz);
% ...and the median and standar deviation of the curvature also
ho_median=median(ho);
ho_std=std(ho);
% put these respective values in our lookup table
NAvg(i,2)=nx_median;
NAvg(i,3)=ny_median;
NAvg(i,4)=nz_median;
NAvg(i,5)=ho_median;
NAvg(i,6)=ho_std;
end
% create a (sparser) point cloud from the bins' centroids
binPtCloud=pointCloud(binCentroid);
% create a matrix for the bins' normals too. We consider this as
% binPtCloud's normals
binNormals=NAvg(:,2:4);
% OPTIONAL: draw the bin point cloud and its normal directions
figure ('name','Sparse Bin Point Cloud Normals')
pcshow(binPtCloud,'MarkerSize',20)
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
hold on
quiver3(binPtCloud.Location(:,1),binPtCloud.Location(:,2), ...
binPtCloud.Location(:,3),binNormals(:,1),binNormals(:,2), ...
binNormals(:,3));
% create a matrix for the bins' curvature too. We consider this as
% binPtCloud's curvature
binCurv=transpose(NAvg(:,5));
% compute the distance between bin centroids. We will use this later to
% determine the nearest neighbour threshold
% here I used the index "i", but it can be anything between 1 and the last
% i value from the last loop (the centroid-to-centroid distance should be
% more or less constant)
binRadius=sqrt((OT.BinBoundaries(binsIsi(i),6)- ...
OT.BinBoundaries(binsIsi(i),3))^2+(OT.BinBoundaries(binsIsi(i),5)- ...
OT.BinBoundaries(binsIsi(i),2))^2+(OT.BinBoundaries(binsIsi(i),4)- ...
OT.BinBoundaries(binsIsi(i),1))^2);
% use the regiongrowingnormals function on our sparse bin point cloud
% notice the default angle of 10 degrees (bigger than the default because
% the point cloud is sparser)
% notice also the min point threshold of 27 (assuming all the bin's
% neighbours are considered as the same region)
Regions=regiongrowingnormals(binPtCloud,binNormals,binCurv,10,1, ...
binRadius*2,27);
% check the number of regions created from the previous operation
nbRegions=numel(fieldnames(Regions));
% start loop to retrieve the other points
for i=1:nbRegions
% name of current region ("Region1","Region2",etc.)
thisRegionName=strcat('Region',int2str(i));
% initialise a list of this region's member points id
thisRegion=[];
% loop to retrive the points in the current region
for j=1:Regions.(thisRegionName).Count
% find the id of the current bin in the original octree structure
[~, index1a]=ismember(binCentroid, ...
Regions.(thisRegionName).Location(j,:),'rows');
index1=find(index1a,1);
index2=binsIsi(index1);
indexRegion=find(OT.PointBins==index2);
% add the point indices located in the current bin into the region
% point id list
thisRegion=[thisRegion;indexRegion];
end
% create a point cloud from the points' indices in the current region
ptCloudOut=select(ptCloud,thisRegion);
% create a label for the region (for visualisation purposes)
for l=1:ptCloudOut.Count
labels(thisRegion(l,1),1)=i+1;
end
% put the results in a struct called Regions2
Regions2.(thisRegionName)=ptCloudOut;
end
% plot the result
figure('name','Octree Segmented Point Cloud')
pcshow(ptCloud.Location,labels,'MarkerSize',20)
colormap(hsv(i+1))
toc