-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwallSeg.m
176 lines (143 loc) · 6.23 KB
/
wallSeg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function [Walls,remainPtCloud] = wallSeg(datapc,inc_tol,thres)
% WALLSEG
%
% Function to extract walls from a point cloud of a buildings. The wall
% detection uses normals to determine if they face the same direction or
% not. The output is a struct WALLS, with the number of detected walls as
% number of fields. Each wall object contains the segmented point cloud of
% the wall, the alphashape, and the mesh of the extracted surface. The
% function also creates .ply files for the results, located in the folder
% "03_Outputs".
%
% Inputs:
% - datapc: point cloud data of a building
% - inc_tol: tolerance for the inclination angle for the wall normals. The
% hypothesis is that a wall has, as the normal's inclination angle, 90
% degrees +/- inc_tol
% - thres: distance threshold for the plane fitting algorithm
%
% Outputs:
% - Walls: a struct with the individual segmented objects as fields.
% Each field consists of another struct ("Object") which keeps the point
% cloud data as well as the alphashape and mesh parameters of the generated
% plane 3D model
% - remainPtCloud: the remaining point cloud after the objects are segmented
%
% (c) Arnadi Murtiyoso (INSA Strasbourg - ICube-TRIO UMR 7357)
format long g;
clear Object;
clear Walls;
%Load the point cloud
ptCloud = datapc;
%Compute cloud normals
normals = pcnormals(ptCloud);
[n_row,~]=size(normals);
%Compute horizontal (bearing) and vertical (inclination) angles from
%normals
r=zeros(n_row,2);
for i=1:n_row
[phi,~] = bearing_surv(0,0,normals(i,1),normals(i,2)); % angle planimetric
theta = rad2deg(acos(normals(i,3))); % angle inclination
r(i,1) = phi;
r(i,2) = theta;
end
%segment the walls. HYPOTHESIS: walls are perpendicular to nadir
rows = find(r(:,2)<90+inc_tol & r(:,2)>90-inc_tol);
%segmented point cloud of ALL the walls
wallsPc = select(ptCloud,rows);
%re-compute normals and normal direction angles for the wallsPc... IMO this
%can be more optimised in the future
normals2 = pcnormals(wallsPc);
[n_row2,~]=size(normals2);
r2=zeros(n_row2,2);
for i=1:n_row2
[phi,~] = bearing_surv(0,0,normals2(i,1),normals2(i,2)); % angle planimetric
theta = rad2deg(acos(normals2(i,3))); % angle inclination
r2(i,1) = phi;
r2(i,2) = theta;
end
%Plot the histogram of the bearings
figure('Name','BearingsHistogram')
h=histogram(r2(:,1),'BinMethod','fd'); %fd seems to be the best in this case
title('Histogram of Normal Bearings - Spikes may indicate walls')
xlabel('Bearing angle (degrees)')
ylabel('Number of points')
%find local maximas in the histogram. HYPOTHESIS: local maxima of the
%histogram of bearings implies a single wall direction
minProm = ceil(0.05*wallsPc.Count); %set minimal prominence to 5% of total points
[ilm,~]=islocalmax(h.Values,'FlatSelection','center','MinProminence',minProm);
% polarhistogram(deg2rad(r(:,1)),h.NumBins); %optional: plot polarhistogram
iterations_tol = 1;%add number of walls, just in case
iterations=sum(ilm(1,:)~=0)+iterations_tol;
%create empty list for object names
mur_list = strings(iterations,1);
%begin the iterations
for i=1:iterations
%create list of object names
mur_list(i,1) = strcat('WALL',string(i));
%fit a plane to the wall point cloud, and then segment the individual
%wall point clouds
[model,inlierIndices,outlierIndices] = pcfitplane(wallsPc,thres);
plane = select(wallsPc,inlierIndices);
remainPtCloud = select(wallsPc,outlierIndices);
wallsPc = remainPtCloud;
%convert the Matlab surface model from pcfitplane to geom3d format
a=model.Parameters(1,1);
b=model.Parameters(1,2);
c=model.Parameters(1,3);
d=model.Parameters(1,4);
P1 = [plane.Location(1,1) plane.Location(1,2) 0];
P1(1,3) = (-d-(a*P1(1,1))-(b*P1(1,2)))/c;
planeGeom3d = createPlane(P1, model.Normal); %plane in geom3d format
%Perform 3D Delaunay Triangulation on the wall point cloud
TR = delaunayTriangulation(double(plane.Location(:,1)),double(plane.Location(:,2)),double(plane.Location(:,3)));
%extract the surface of the Delaunay mesh TR (otherwise stored in
%tetrahedral form)
[~,xf] = freeBoundary(TR);
[size_xf,~] = size(xf);
%project the points to the mathematical surface model to get 1 surface
%in the form of the wall
prjtdPts = zeros(size_xf,3);
for j=1:size_xf
%create a 3D ray for each foint in the mesh surface
line = createLine3d(xf(j,1), xf(j,2), xf(j,3), model.Normal(1,1), model.Normal(1,2), model.Normal(1,3));
%intersect the 3D ray with the mathematical surface
prjtdPt = intersectLinePlane(line, planeGeom3d);
%store the coordinates of the intersection
prjtdPts(j,1) = prjtdPt(1,1);
prjtdPts(j,2) = prjtdPt(1,2);
prjtdPts(j,3) = prjtdPt(1,3);
end
%perform 3D Delaunay Triangulation on the projected points
TR2 = delaunayTriangulation(double(prjtdPts(:,1)),double(prjtdPts(:,2)),double(prjtdPts(:,3)));
%extract the surface of the Delaunay mesh of the projected points
[F,xf2] = freeBoundary(TR2);
%further smoothing here?
%store the mesh properties in a struct
Mesh.Vertices = xf2;
Mesh.Faces = F;
%create a Matlab alphashape
shp = alphaShape(xf2(:,1),xf2(:,2),xf2(:,3),inf);
%store all of this stuff in the another struct called Object
Object.PtCloud = plane;
Object.AlphaShp = shp;
Object.Mesh = Mesh;
%store the objects in a struct containing all the detected walls
Walls.(mur_list{i}) = Object;
%write a ply file of the segmented wall point cloud
pcwrite(plane,strcat('.\03_Output\01_PtCloud\',mur_list(i),'_step3_PtCloud.ply'));
%write a ply file of the wall's planemesh
fname = convertStringsToChars(strcat('.\03_Output\02_Meshes\',mur_list(i),'_step3_planeMesh.ply'));
writeMesh_ply(fname, Mesh.Vertices, Mesh.Faces);
end
%plot the segmented walls
figure ('Name','DetectedWalls')
axis equal
title('Detected Walls Plane Mesh')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
for i=1:iterations
drawMesh(Walls.(mur_list(i,1)).Mesh.Vertices,Walls.(mur_list(i,1)).Mesh.Faces);
hold on
end