-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_rag.py
160 lines (118 loc) · 4.36 KB
/
run_rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from montecarlo.node import Node
from montecarlo.montecarlo import MonteCarlo
from lang import can_be_solution, code_of_msg
from lang import score_func as uncached_score_func
from lang import short_verifier_feedback
from common_interactive import diffprompt
from prompts import prompt, min_lines, expansion_count, check_func, check_string, test_dict
from lang import run_tests
if test_dict and run_tests:
uncached_score_func_before_dict = uncached_score_func
uncached_score_func = lambda x: uncached_score_func_before_dict(x, test_dict)
from common_cache import create_cached_func
score_func, cache_stats, reset_cache = create_cached_func(uncached_score_func)
from common import limit_depth, max_completion_depth, limit_tokens
from common_stats import stats
import llm
import time
import common_wandb
from call_rag import retrieve as rag # there's also the original augment
from cmdline import args
node_dups_counter = 0
def clean(x):
x = x.replace("```dafny", "")
x = x.replace("```", "")
return x
class FocusNode:
def __init__(self, instructions, code, hint):
self.instructions = clean(instructions)
self.code = code
self.hint = clean(hint)
def update(self, text, hint = None):
code = code_of_msg(text)
return FocusNode(self.instructions, code, clean(hint) if hint else self.hint)
def text(self):
return f"""
CONTEXT
{self.hint}
INSTRUCTIONS
{self.instructions}
CODE
```dafny
{self.code}
"""
def generate_complete(focus, montecarlo, current_completion_depth = 1):
if current_completion_depth >= max_completion_depth:
return None, current_completion_depth
text = focus.text()
prev = text
texts = llm.generate(text, 1)
text = texts[0]
score = score_func(text)
print(diffprompt(prev, texts))
if score is not None:
if score < 0:
return None, current_completion_depth
else:
if can_be_solution(text, min_lines, check_func, check_string, test_dict):
montecarlo.solution = text
return text, current_completion_depth
else:
return generate_complete(focus.update(text), montecarlo, current_completion_depth + 1)
def child_finder(node, montecarlo):
if limit_depth(node, lambda x: x.text()):
return
pre_gen_time = time.time()
pre_gen_toks = llm.token_counter
text, depth = generate_complete(node.state, montecarlo)
gen_stat = common_wandb.compute_gen_stat(pre_gen_time, pre_gen_toks, text, depth)
if text is None:
node.update_win_value(-1)
else:
hint = rag(node.state.instructions, node.state.code)
#print('HINT is [[\n', hint, '\n]]')
new_state = node.state.update(text, hint)
child = Node(new_state)
if node.is_widen_node:
node.visits += 1
node.parent.add_child(child)
for c in node.parent.children:
if c.state == text:
global node_dups_counter
node_dups_counter += 1
print("found string-duplicated node:")
print(text)
else:
node.add_child(child)
# Update values
child.update_win_value(1)
child.update_policy_value(1)
# Add widen node
widen = Node(new_state)
widen.is_widen_node = True
child.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
common_wandb.log_tree(montecarlo, gen_stat, node)
# Check on token limit after this generation
if limit_tokens():
if montecarlo.solution is None:
montecarlo.solution = "Token limit reached"
print("Token limit reached, no solution found")
def main(mins_timeout = None, prompt = prompt):
initial_code = code_of_msg(prompt)
initial_hint = rag(prompt, initial_code)
initial_state = FocusNode(prompt, initial_code, initial_hint)
montecarlo = MonteCarlo(Node(initial_state), mins_timeout)
widen = Node(initial_state)
widen.is_widen_node = True
montecarlo.root_node.add_child(widen)
widen.update_policy_value(args.widen_policy_value)
montecarlo.child_finder = child_finder
montecarlo.simulate(expansion_count)
print('CHOSEN SOLUTION')
print(montecarlo.solution)
stats(montecarlo)
print('cache stats', cache_stats)
return cache_stats
if __name__ == '__main__':
main()