-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTrain.py
224 lines (187 loc) · 8.59 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import glob
import numpy as np
import matplotlib.pyplot as plt
import os
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras.optimizers import Adam, nadam,SGD
from keras.layers import Input
# from Code.utils.lossfunctions import jaccard_distance_loss,dice_coef_loss
from Code.utils.metricfunctions import dice_coef,f1
from Code.utils.lossfunctions import *
#from Code.network.unetmod.u_net_mod import get_unet_mod
from Code.network.unetmod.u_net_mod import *
from Code.network.unet.u_net import get_unet
from Code.network.segnet.segnet import get_segnet
from Code.network.deeplab.deeplab import Deeplabv3
import argparse
import tensorflow as tf
from skimage.util.shape import view_as_windows
import json
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
with open('./config.json') as config_file:
config = json.load(config_file)
# print (config)
im_width = config['im_width']
im_height = config['im_height']
patch_width = config['patch_width']
patch_height = config['patch_height']
Epochs = config['Epochs']
TRAIN_PATH_IMAGES = config['TRAIN_PATH_IMAGES']
TRAIN_PATH_GT = config['TRAIN_PATH_GT']
TEST_PATH_IMAGES = config['TEST_PATH_IMAGES']
TEST_PATH_GT = config['TEST_PATH_GT']
ids_train_x = glob.glob(TRAIN_PATH_IMAGES)
ids_train_y = glob.glob(TRAIN_PATH_GT)
print("No. of training images = ", len(ids_train_x))
ids_test_x = glob.glob(TEST_PATH_IMAGES)
ids_test_y = glob.glob(TEST_PATH_GT)
print("No. of testing images = ", len(ids_test_x))
#X_train = np.zeros((len(ids_train_x), im_height, im_width, 3), dtype=np.float32)
#y_train = np.zeros((len(ids_train_y), im_height, im_width, 1), dtype=np.float32)
#X_test = np.zeros((len(ids_test_x), im_height, im_width, 3), dtype=np.float32)
#y_test = np.zeros((len(ids_test_y), im_height, im_width, 1), dtype=np.float32)
X_train = []
y_train = []
X_test = []
y_test = []
print("Loading Training Data")
count =0
for x in (ids_train_x):
base=os.path.basename(x)
fn = os.path.splitext(base)[0]
y = glob.glob(config['TRAIN_PATH_GT']+fn+'*')[0]
x_img = img_to_array(load_img(x, color_mode='rgb', target_size=[im_width,im_height]))
x_img = x_img/255.0
# Load masks
mask = img_to_array(load_img(y, color_mode='grayscale', target_size=[im_width,im_height]))
mask = mask/255.0
#X_train[count] = x_img/255.0
#y_train[count] = mask/255.0
new_imgs = view_as_windows(x_img, (patch_width, patch_height, 3), (patch_width//2, patch_height//2, 3))
#print("Number of Patches")
#print(new_imgs.shape)
for patch in new_imgs:
X_train.append(patch)
new_masks = view_as_windows(mask, (patch_width, patch_height, 1), (patch_width//2, patch_height//2, 1))
for patch in new_masks:
y_train.append(patch)
count = count+1
print("Loading Testing Data")
count =0
for x in (ids_test_x):
base=os.path.basename(x)
fn = os.path.splitext(base)[0]
y = glob.glob(config['TEST_PATH_GT']+fn+'*')[0]
x_img = img_to_array(load_img(x, color_mode='rgb', target_size=[im_width,im_height]))
x_img = x_img/255.0
# Load masks
mask = img_to_array(load_img(y, color_mode='grayscale', target_size=[im_width,im_height]))
mask = mask/255.0
#X_test[count] = x_img/255.0
#y_test[count] = mask/255.0
new_imgs = view_as_windows(x_img, (patch_width, patch_height, 3), (patch_width//2, patch_height//2, 3))
for patch in new_imgs:
X_test.append(patch)
new_masks = view_as_windows(mask, (patch_width, patch_height, 1), (patch_width//2, patch_height//2, 1))
for patch in new_masks:
y_test.append(patch)
count = count+1
#print(len(X_train),len(y_train))
#print(len(X_test),len(y_test))
X_train = np.array(X_train)
y_train = np.array(y_train)
X_test = np.array(X_test)
y_test = np.array(y_test)
input_img = Input((256, 256, 3), name='img')
#from tensorflow.keras.utils.vis_utils import plot_model
if config['Model'] == "UNETMOD":
print("Loading UNETMOD Model")
model = get_unet_mod(input_img, n_filters=16, dropout=0.1, batchnorm=True) #32
# model.compile(optimizer=Adam(1e-5), loss=jaccard_distance_loss, metrics=[iou,dice_coef])
model.compile(optimizer=Adam(amsgrad=True), loss=jaccard_distance_loss, metrics=["accuracy", dice_coef, f1])
print("Printing Model Summary")
print (model.summary())
tf.keras.utils.plot_model(model, './Code/network/unetmod/unet_plot.png')
if config['Model'] == "UNET":
print("Loading UNET Model")
model = get_unet(input_img, n_filters=16, dropout=0.1, batchnorm=True)
# model.compile(optimizer=Adam(1e-5), loss=jaccard_distance_loss, metrics=[iou,dice_coef])
model.compile(optimizer=Adam(amsgrad=True), loss=jaccard_distance_loss, metrics=["accuracy", dice_coef, f1])
print("Printing Model Summary")
print (model.summary())
tf.keras.utils.plot_model(model, './Code/network/unet/unet_plot.png')
if config['Model'] == "SEGNET":
print("Loading SEGNET Model")
model = get_segnet((patch_height, patch_width, 3))
#n_labels=3,
#kernel=3,
#pool_size=(2, 2),
#output_mode="softmax")
model.compile(optimizer=Adam(amsgrad=True), loss=jaccard_distance_loss, metrics=["accuracy", dice_coef, f1])
print("Printing Model Summary")
print (model.summary())
tf.keras.utils.plot_model(model, './Code/network/segnet/segnet_plot.png')
if config['Model'] == "DEEPLAB":
print("Loading DEEPLAB Model")
model = Deeplabv3(weights=None, input_tensor=None, input_shape=(patch_height, patch_width, 3), classes=1, backbone='xception',
OS=16, alpha=1., activation='sigmoid')
model.compile(optimizer=tf.keras.optimizers.Adam(amsgrad=True), loss=jaccard_distance_loss, metrics=["accuracy", dice_coef, f1])
#plot_model(model, to_file='./Code/network/deeplab/deeplab_plot.png', show_shapes=True, show_layer_names=True)
print("Compiling Model")
#model.compile(optimizer=sgd(), loss="binary_crossentropy"dice_coef_loss,jaccard_distance_loss metrics=["accuracy"]) # ,f1_m,iou_coef,dice_coef
#
#nadam(lr=1e-5)
#Adam(1e-5, amsgrad=True, clipnorm=5.0)
#Adam()
#SGD(lr=1e-5, momentum=0.95)
callbacks = [
EarlyStopping(patience=10, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=10, min_lr=0.00001, verbose=1),
ModelCheckpoint('./Results/weights/'+str(config['Model'])+'/'+str(config['Model'])+'-Best.h5', monitor='val_dice_coef',mode = 'max' , verbose=1, save_best_only=True, save_weights_only=False)
]
X_train = X_train.reshape(-1,patch_height,patch_width,3)
y_train = y_train.reshape(-1,patch_height,patch_width,1)
X_test = X_test.reshape(-1,patch_height,patch_width,3)
y_test = y_test.reshape(-1,patch_height,patch_width,1)
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
results = model.fit(X_train, y_train, batch_size=config['Batch'], verbose=1, epochs=Epochs, callbacks=callbacks,\
validation_data=(X_test, y_test))
print(model.evaluate(X_test, y_test, verbose=1))
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["loss"], label="loss")
plt.plot(results.history["val_loss"], label="val_loss")
plt.plot( np.argmin(results.history["val_loss"]), np.min(results.history["val_loss"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("log_loss")
plt.legend();
plt.savefig('./Results/plots/'+str(config['Model'])+'/train_loss.png')
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["dice_coef"], label="dice_coef")
plt.plot(results.history["val_dice_coef"], label="val_dice_coef")
plt.plot( np.argmax(results.history["val_dice_coef"]), np.max(results.history["val_dice_coef"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("Dice Coeff")
plt.legend();
plt.savefig('./Results/plots/'+str(config['Model'])+'/train_dice.png')
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["f1"], label="f1")
plt.plot(results.history["val_f1"], label="val_f1")
plt.plot( np.argmax(results.history["val_f1"]), np.max(results.history["val_f1"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("f1")
plt.legend();
plt.savefig('./Results/plots/'+str(config['Model'])+'/train_f1.png')
plt.figure(figsize=(8, 8))
plt.title("Learning curve")
plt.plot(results.history["accuracy"], label="accuracy")
plt.plot(results.history["val_accuracy"], label="val_accuracy")
plt.plot( np.argmax(results.history["val_accuracy"]), np.max(results.history["val_accuracy"]), marker="x", color="r", label="best model")
plt.xlabel("Epochs")
plt.ylabel("accuracy")
plt.legend();
plt.savefig('./Results/plots/'+str(config['Model'])+'/train_accuracy.png')