-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfind_nearest_xy.py
executable file
·107 lines (90 loc) · 4.28 KB
/
find_nearest_xy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
def find_nearest_xy(vector_2_search,value,how_many=1):
"""
% (C) Nick Holschuh - Penn State University - 2013 (Nick.Holschuh@gmail.com)
%
% In the way that the find commands finds values in a matrix identical to
% the search vector, this command finds the nearest entry. For use with
% arrays of points defined by two coordinates: x and y
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The inputs are:
%
% vector_2_search = The set of data that you want to search. Primary use has
% this object as an nx2 array, where the columns correspond
% to the x and y coordinates.
% This also works with a n x m x 2 matrix to search, with
% x y pairs in the 3rd dimension.
% value = The values you want to find within "vector_2_search". This must be
% an nx2 array, where columns are x and y coordinates
% how_many = The function will find the x nearest values to "value", where
% x is an integer defined by "how_many". This is only implemented
% for the case where an n x m x 2 vector_2_search is supplied
%
%
%%%%%%%%%%%%%%%
% The output is a dictionary containing:
%
% index = the index values for the location within "vector_2_search" where
% the nearest possible values are stored.
%
% distance = the distance between the values and their nearest point within
% the vector_2_search
%
% results = the values themselves within the vector.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
"""
if isinstance(vector_2_search,list):
vector_2_search = np.array(vector_2_search)
if isinstance(value,list):
value = np.array(value)
sd = vector_2_search.shape
if sd[0] == 2:
vector_2_search = vector_2_search.transpose();
else:
vector_2_search = vector_2_search;
ss = value.shape
if len(ss) == 1:
value = np.expand_dims(value,axis=0)
ss = value.shape
## The two column, vector search case
if len(sd) == 2:
comp_vec = vector_2_search[:,0] + vector_2_search[:,1]*np.sqrt(np.array(-1,dtype=complex));
ss = value.shape
if np.all([np.min(ss) > 1,ss[0] >= ss[1]]):
value2 = value.transpose();
elif ss[0] == 1:
value2 = value.transpose();
else:
value2 = value;
value_search = value2[0,:] + value2[1,:]*np.sqrt(np.array(-1,dtype=complex));
complex_dists = np.tile(comp_vec,(len(value_search),1)).transpose()-np.tile(value_search,(len(comp_vec),1))
dists = np.abs(complex_dists);
## Most efficient method for looking for an individual
## value
minval = np.min(dists,0)
ind = np.argmin(dists,0)
index = ind.transpose();
distance = minval.transpose();
result = vector_2_search[index,:];
#### The m x n x 2, matrix search case
elif sd[2] == 2:
vector_2_search_temp[:,:,0] = vector_2_search[:,:,0] - value[:,0];
vector_2_search_temp[:,:,1] = vector_2_search[:,:,1] - value[:,1];
vector_2_search_temp2 = (vector_2_search_temp[:,:,0]**2+vector_2_search_temp[:,:,1]**2)**0.5;
counter = 1;
while counter <= how_many:
temp_index = np.where(np.min(np.min(vector_2_search_temp2)) == vector_2_search_temp2)
[index_r,index_c] = np.where(np.min(np.min(vector_2_search_temp2)) == vector_2_search_temp2);
for i in np.arange(0,len(temp_index)):
index[counter] = temp_index[i];
distance[counter] = np.min(np.min(vector_2_search_temp2));
result[counter,:] = [vector_2_search[index_r[i],index_c[i],1],vector_2_search[index_r[i],index_c[i],2]];
## This sets the distance to the recently selected point to
## max, so it is not chosen again.
vector_2_search_temp2[index[counter]] = np.max(np.max(vector_2_search_temp2));
counter = counter+1;
if counter > how_many:
break
return {'index':index, 'distance':distance, 'result':result}