-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (77 loc) · 3.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Decision tree classifier for 2D shapes recognition."""
from colorama import Style
from load_data import load_training_data_list
from decision_tree import build_tree, draw_tree, print_tree, export_tree, print_leaf, classify
def print_input_data_element(element):
"""Prints the input data element in a readable format."""
# print(f"{Style.DIM}label:", f"{Style.NORMAL}{element[6]}")
# print(f"{Style.DIM}file_name:", f"{Style.NORMAL}{element[5]}")
print(f"{Style.DIM}label:", f"{Style.NORMAL}{element[5]}")
print(f"{Style.DIM}file_path:", f"{Style.NORMAL}{element[4]}")
print(f"{Style.DIM}corners_count:", f"{Style.NORMAL}{element[0]}")
print(f"{Style.DIM}right_angle_counter:", f"{Style.NORMAL}{element[1]}")
print(f"{Style.DIM}parallel_sides_counter:", f"{Style.NORMAL}{element[2]}")
print(f"{Style.DIM}h_w_ratio:", f"{Style.NORMAL}{element[3]}")
def print_classification(data, tree):
"""Prints the classification of the testing data."""
for data_row_idx, data_row in enumerate(data):
classification = classify(data_row, tree)
printed_leaf = print_leaf(classification)
prediction = list(printed_leaf.keys())[0]
confidence = list(printed_leaf.values())[0]
print(f"Testing data element #{data_row_idx}:")
print_input_data_element(data_row)
print(f"Prediction: {prediction}")
print(f"Confidence: {confidence}")
print(Style.RESET_ALL)
if __name__ == '__main__':
training_default_jpg_path_list = (
'train_images/circle01.jpg',
'train_images/circle02.jpg',
'train_images/elipse01.jpg',
'train_images/elipse02.jpg',
'train_images/rectangle01.jpg',
'train_images/rectangle02.jpg',
'train_images/rectangle03.jpg',
'train_images/rhombus01.jpg',
'train_images/square01.jpg',
'train_images/square02.jpg',
'train_images/triangle01.jpg',
'train_images/triangle02.jpg'
)
training_data = load_training_data_list(training_default_jpg_path_list)
for training_data_element_idx, training_data_element in enumerate(training_data):
print(f"Training data element #{training_data_element_idx}:")
print_input_data_element(training_data_element)
print()
print('Do you want to use Information Gain Ratio instead of Information Gain? (y/n)')
answer = input()
if answer == 'y':
print('Using Information Gain Ratio.')
my_tree = build_tree(training_data, True)
else:
print('Using Information Gain.')
my_tree = build_tree(training_data, False)
print_tree(my_tree)
tree_drawing = draw_tree(my_tree)
print()
export_tree(tree_drawing)
testing_default_jpg_path_list = (
'input/test1.jpg',
'input/test2.jpg',
'input/test3.jpg'
)
print()
print('Do you want to add your own test data? (y/n)')
answer = input()
if answer == 'y':
print()
while True:
print('Enter paths to you test data (separated by commas):')
testing_data = load_training_data_list(input().replace(' ', '').split(','))
print_classification(testing_data, my_tree)
else:
print()
testing_data = load_training_data_list(testing_default_jpg_path_list)
print('Classification for default testing data:')
print_classification(testing_data, my_tree)