-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgeometry.h
222 lines (196 loc) · 6.86 KB
/
geometry.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#ifndef GEOMETRY_H
#define GEOMETRY_H
// ^To make sure I don't declare any function more than once by including the header multiple times.
#include <math.h>
#include <vector>
using namespace std ;
// Type of data type to be used for all calculations (Ex: long double)
#define ftype double
/* NOTE: Most of the calculations are done using EPS as a factor of difference
since double/long double doesn't store floating point values precisely (limited precision) */
const ftype EPS = 1e-6;
struct Point {
ftype x, y;
Point() {}
Point(ftype x, ftype y): x(x), y(y) {}
Point& operator+=(const Point &t) {
x += t.x;
y += t.y;
return *this;
}
Point& operator-=(const Point &t) {
x -= t.x;
y -= t.y;
return *this;
}
Point& operator*=(ftype t) {
x *= t;
y *= t;
return *this;
}
Point& operator/=(ftype t) {
x /= t;
y /= t;
return *this;
}
Point operator+(const Point &t) const {
return Point(*this) += t;
}
Point operator-(const Point &t) const {
return Point(*this) -= t;
}
Point operator*(ftype t) const {
return Point(*this) *= t;
}
Point operator/(ftype t) const {
return Point(*this) /= t;
}
ftype dot(const Point &t) const {
return (x*t.x + y*t.y);
}
ftype cross(const Point& t) const {
return x * t.y - y * t.x;
}
ftype cross(const Point& a, const Point& b) const {
return (a - *this).cross(b - *this);
}
ftype distance(const Point &t) const {
const double x_diff = x - t.x, y_diff = y - t.y ;
return sqrt(x_diff * x_diff + y_diff * y_diff);
}
Point steer(const Point& t, ftype DELTA) {
if(this->distance(t) < DELTA) {
return t ;
}
else {
double theta = atan2(t.y - y, t.x - x);
return Point(x + DELTA * cos(theta), y + DELTA * sin(theta));
}
}
bool operator==(const Point& rhs) const
{
return fabs(x - rhs.x) < EPS and fabs(y - rhs.y) < EPS ; // or another approach as above
}
};
Point operator*(ftype a, Point b) {
return b * a;
}
ftype distance(Point& a, Point &b) {
const ftype x_diff = a.x - b.x, y_diff = a.y - b.y ;
return sqrt(x_diff * x_diff + y_diff * y_diff);
}
ftype dot(Point a, Point b) {
return (a.x*b.x + a.y*b.y);
}
ftype cross(Point a, Point b) {
return (a.x*b.y - b.x*a.y);
}
/* Returns a point in the direction of (p2 - p1) vector such that
the new point is within a DELTA distance of point1 */
Point stepNear(Point& p1, Point& p2, ftype DELTA) {
if( (distance(p1, p2) - DELTA) <= EPS)
return p2 ;
else {
ftype theta = atan2(p2.y - p1.y, p2.x - p1.x);
return Point(p1.x + DELTA * cos(theta), p1.y + DELTA * sin(theta));
}
}
// Return minimum distance between line segment vw and point p
ftype minimum_distance(Point v, Point w, Point p) {
ftype l2 = distance(v, w); l2 *= l2 ; // i.e. |w-v|^2 - avoid a sqrt
if (l2 < EPS) return distance(p, v); // v == w case
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
const ftype t = max(0.0, min(1.0, dot(p - v, w - v) / l2));
Point projection = v + t * (w - v); // Projection falls on the segment
return distance(p, projection);
}
struct Polygon {
vector < Point > points ; // Assumes clockwise/anti-clockwise points input
int pointCnt = 0 ;
void addPoint(const Point pnt) {
points.push_back(pnt); pointCnt++ ;
}
vector < Point > getPoints() {
return points ;
}
bool pointInside(const Point point) { // Can be done in log(N)
int i, j, nvert = points.size();
bool c = false;
for(i = 0, j = nvert - 1; i < nvert; j = i++) {
if( ( (points[i].y >= point.y ) != (points[j].y >= point.y) ) &&
(point.x <= (points[j].x - points[i].x) * (point.y - points[i].y) / (points[j].y - points[i].y) + points[i].x)
)
c = !c;
}
return c;
}
};
/* Return true if the given line segment intersects the circle whose center
is at location */
bool checkCollision(Point lineFrom, Point lineTo, Point location, ftype radius)
{
location += Point(radius, radius); // Adjust location from top-left corner to center coordinates
ftype ab2, acab, h2;
Point ac = location - lineFrom;
Point ab = lineTo - lineFrom;
ab2 = dot(ab, ab); acab = dot(ac, ab);
ftype t = acab / ab2;
if (t < 0) t = 0;
else if (t > 1) t = 1;
Point h = ((ab * t) + lineFrom) - location;
h2 = dot(h, h);
return (h2 <= (radius * radius));
}
// taken from stackoverflow: https://stackoverflow.com/questions/11716268/point-in-polygon-algorithm
// this can be done in log(N) though
bool PointInPolygon(Point point, Polygon polygon) {
vector<Point> points = polygon.getPoints();
int i, j, nvert = points.size();
bool c = false;
for(i = 0, j = nvert - 1; i < nvert; j = i++) {
if( ( (points[i].y >= point.y ) != (points[j].y >= point.y) ) &&
(point.x <= (points[j].x - points[i].x) * (point.y - points[i].y) / (points[j].y - points[i].y) + points[i].x)
)
c = !c;
}
return c;
}
// helper function
int sign(const ftype x) {
return x >= 0 ? x ? 1 : 0 : -1;
}
/* Returns true if two line segments on the same line intersect.
(a, b) denote the endpoints of first line segment and
(c, d) denotes the endpoints of the second lint segment */
bool intersectOnLine(ftype a, ftype b, ftype c, ftype d) {
if ((a - b) > EPS) swap(a, b);
if ((c - d) > EPS) swap(c, d);
return max(a, c) <= min(b, d);
}
// Returns true if the two line segments (a, b) and (c, d) intersect
bool check_intersection(const Point a, const Point b, const Point c, const Point d) {
// Check if both line segments lie on the same line
if (c.cross(a, d) == 0 && c.cross(b, d) == 0)
return intersectOnLine(a.x, b.x, c.x, d.x) && intersectOnLine(a.y, b.y, c.y, d.y);
// Check if a and b both lie on different side of line segment CD
// Similarly check for c and d to lie on different side of line segment AC
return sign(a.cross(b, c)) != sign(a.cross(b, d)) && sign(c.cross(d, a)) != sign(c.cross(d, b));
}
/* Returns true if the given line segment represented by ba intersects with any
side of the polygon */
bool lineSegmentIntersectsPolygon(Point a, Point b, Polygon& polygon) {
// PQ is merely a point not enough distance for it be line segment
if( a.distance(b) < EPS )
return PointInPolygon( (a+b)/2.0, polygon);
int num = polygon.pointCnt ;
vector < Point > points = polygon.getPoints();
for(int i = 0; i < num; i++) {
int nxt = i+1; if(nxt == num) nxt = 0 ;
if(check_intersection(a, b, points[i], points[nxt])) return true ;
}
return false ;
}
#endif