-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverted_index_gcp.py
208 lines (184 loc) · 8.02 KB
/
inverted_index_gcp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import sys
from collections import Counter, OrderedDict
import itertools
from itertools import islice, count, groupby
import pandas as pd
import os
import re
from operator import itemgetter
from time import time
from pathlib import Path
import pickle
from google.cloud import storage
from collections import defaultdict
from contextlib import closing
PROJECT_ID = 'ornate-artifact-414010'
def get_bucket(bucket_name):
return storage.Client(PROJECT_ID).bucket(bucket_name)
def _open(path, mode, bucket=None):
if bucket is None:
return open(path, mode)
return bucket.blob(path).open(mode)
# Let's start with a small block size of 30 bytes just to test things out.
BLOCK_SIZE = 1999998
class MultiFileWriter:
""" Sequential binary writer to multiple files of up to BLOCK_SIZE each. """
def __init__(self, base_dir, name, bucket_name=None):
self._base_dir = Path(base_dir)
self._name = name
self._bucket = None if bucket_name is None else get_bucket(bucket_name)
self._file_gen = (_open(str(self._base_dir / f'{name}_{i:03}.bin'),
'wb', self._bucket)
for i in itertools.count())
self._f = next(self._file_gen)
def write(self, b):
locs = []
while len(b) > 0:
pos = self._f.tell()
remaining = BLOCK_SIZE - pos
# if the current file is full, close and open a new one.
if remaining == 0:
self._f.close()
self._f = next(self._file_gen)
pos, remaining = 0, BLOCK_SIZE
self._f.write(b[:remaining])
name = self._f.name if hasattr(self._f, 'name') else self._f._blob.name
locs.append((name, pos))
b = b[remaining:]
return locs
def close(self):
self._f.close()
class MultiFileReader:
""" Sequential binary reader of multiple files of up to BLOCK_SIZE each. """
def __init__(self, base_dir, bucket_name=None):
self._base_dir = Path(base_dir)
self._bucket = None if bucket_name is None else get_bucket(bucket_name)
self._open_files = {}
def read(self, locs, n_bytes):
b = []
for f_name, offset in locs:
f_name = str(self._base_dir / f_name)
if f_name not in self._open_files:
self._open_files[f_name] = _open(f_name, 'rb', self._bucket)
f = self._open_files[f_name]
f.seek(offset)
n_read = min(n_bytes, BLOCK_SIZE - offset)
b.append(f.read(n_read))
n_bytes -= n_read
return b''.join(b)
def close(self):
for f in self._open_files.values():
f.close()
def __exit__(self, exc_type, exc_value, traceback):
self.close()
return False
TUPLE_SIZE = 6 # We're going to pack the doc_id and tf values in this
# many bytes.
TF_MASK = 2 ** 16 - 1 # Masking the 16 low bits of an integer
class InvertedIndex:
def __init__(self, docs={}):
""" Initializes the inverted index and add documents to it (if provided).
Parameters:
-----------
docs: dict mapping doc_id to list of tokens
"""
# stores global variable
self.N = 0
self.tf_idf = {}
self.doc_len = {}
self.doc_id_title = {}
# stores document frequency per term
self.df = Counter()
self.norm = {}
# stores total frequency per term
self.term_total = Counter()
# stores posting list per term while building the index (internally),
# otherwise too big to store in memory.
self._posting_list = defaultdict(list)
# mapping a term to posting file locations, which is a list of
# (file_name, offset) pairs. Since posting lists are big we are going to
# write them to disk and just save their location in this list. We are
# using the MultiFileWriter helper class to write fixed-size files and store
# for each term/posting list its list of locations. The offset represents
# the number of bytes from the beginning of the file where the posting list
# starts.
self.posting_locs = defaultdict(list)
for doc_id, tokens in docs.items():
self.add_doc(doc_id, tokens)
def add_doc(self, doc_id, tokens):
""" Adds a document to the index with a given `doc_id` and tokens. It counts
the tf of tokens, then update the index (in memory, no storage
side-effects).
"""
w2cnt = Counter(tokens)
self.term_total.update(w2cnt)
for w, cnt in w2cnt.items():
self.df[w] = self.df.get(w, 0) + 1
self._posting_list[w].append((doc_id, cnt))
def write_index(self, base_dir, name, bucket_name=None):
""" Write the in-memory index to disk. Results in the file:
(1) `name`.pkl containing the global term stats (e.g. df).
"""
#### GLOBAL DICTIONARIES ####
self._write_globals(base_dir, name, bucket_name)
def _write_globals(self, base_dir, name, bucket_name):
path = str(Path(base_dir) / f'{name}.pkl')
bucket = None if bucket_name is None else get_bucket(bucket_name)
with _open(path, 'wb', bucket) as f:
pickle.dump(self, f)
def __getstate__(self):
""" Modify how the object is pickled by removing the internal posting lists
from the object's state dictionary.
"""
state = self.__dict__.copy()
del state['_posting_list']
return state
def posting_lists_iter(self, base_dir, bucket_name=None):
""" A generator that reads one posting list from disk and yields
a (word:str, [(doc_id:int, tf:int), ...]) tuple.
"""
with closing(MultiFileReader(base_dir, bucket_name)) as reader:
for w, locs in self.posting_locs.items():
b = reader.read(locs, self.df[w] * TUPLE_SIZE)
posting_list = []
for i in range(self.df[w]):
doc_id = int.from_bytes(b[i*TUPLE_SIZE:i*TUPLE_SIZE+4], 'big')
tf = int.from_bytes(b[i*TUPLE_SIZE+4:(i+1)*TUPLE_SIZE], 'big')
posting_list.append((doc_id, tf))
yield w, posting_list
def read_a_posting_list(self, base_dir, w, bucket_name=None):
posting_list = []
if not w in self.posting_locs:
return posting_list
with closing(MultiFileReader(base_dir, bucket_name)) as reader:
locs = self.posting_locs[w]
b = reader.read(locs, self.df[w] * TUPLE_SIZE)
for i in range(self.df[w]):
doc_id = int.from_bytes(b[i*TUPLE_SIZE:i*TUPLE_SIZE+4], 'big')
tf = int.from_bytes(b[i*TUPLE_SIZE+4:(i+1)*TUPLE_SIZE], 'big')
posting_list.append((doc_id, tf))
return posting_list
@staticmethod
def write_a_posting_list(b_w_pl, base_dir, bucket_name=None):
posting_locs = defaultdict(list)
bucket_id, list_w_pl = b_w_pl
with closing(MultiFileWriter(base_dir, bucket_id, bucket_name)) as writer:
for w, pl in list_w_pl:
# convert to bytes
b = b''.join([(doc_id << 16 | (tf & TF_MASK)).to_bytes(TUPLE_SIZE, 'big')
for doc_id, tf in pl])
# write to file(s)
locs = writer.write(b)
# save file locations to index
posting_locs[w].extend(locs)
path = str(Path(base_dir) / f'{bucket_id}_posting_locs.pickle')
bucket = None if bucket_name is None else get_bucket(bucket_name)
with _open(path, 'wb', bucket) as f:
pickle.dump(posting_locs, f)
return bucket_id
@staticmethod
def read_index(base_dir, name, bucket_name=None):
path = str(Path(base_dir) / f'{name}.pkl')
bucket = None if bucket_name is None else get_bucket(bucket_name)
with _open(path, 'rb', bucket) as f:
return pickle.load(f)