-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDeepCoDA_without_attention.py
217 lines (192 loc) · 9.34 KB
/
DeepCoDA_without_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# set big font
import seaborn as sns
sns.set_context("notebook", font_scale=1.8)
plt.style.use('fivethirtyeight')
import timeit
import datetime
import argparse
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from keras.layers import Input, Dense, Concatenate, Lambda
from keras.models import Model, Sequential
from keras import backend as K
from keras import regularizers
from keras import optimizers
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default="5a", type=str, nargs='?', help='dataset')
parser.add_argument('--level', default="5", type=str, nargs='?', help='level')
parser.add_argument('--sumzero', default="1e0", type=str, nargs='?', help='sumzero')
parser.add_argument('--l1', default="1e-2", type=str, nargs='?', help='l1')
args = parser.parse_args()
print("data_id={}, cascade_lvl={}, sumzero_lambda={}, l1_lambda={}".format(args.dataset, args.level, args.sumzero, args.l1))
np.random.seed(123)
# discovery set
"""
datasets = {"1a": "1a-selbal-crohn", "1b": "1b-selbal-msm-hivonly",
"2a": "2a-franzosa-mic-ibd-v-hc", "2b": "2b-franzosa-mic-cd-v-uc", "2c": "2c-franzosa-met10-ibd-v-hc", "2d": "2d-franzosa-met10-cd-v-uc",
"3a": "3a-duvallet-schubert-case-v-diarrhea", "3b": "3b-duvallet-schubert-case-v-nondc", "3c": "3c-duvallet-baxter-crc-v-h", "3d": "3d-duvallet-baxter-crc-v-noncrc",
"4a": "4a-brca-mirna10-ca-v-hc", "4b": "4b-brca-mirna10-her2-v-ca", "4c": "4c-brca-mirna10-lumA-v-lumB"}
"""
# verification set
datasets = {"5a": "5a-gevers-task-ileum", "5b": "5b-gevers-task-rectum",
"6a": "6a-hmp-task-gastro-oral", "6b": "6b-hmp-task-sex", "6c": "6c-hmp-task-stool-tongue-paired", "6d": "6d-hmp-task-sub-supragingivalplaque-paired",
"7a": "7a-kostic-task",
"8a": "8a-qin2012-task-healthy-diabetes", "8b": "8b-qin2014-task-healthy-cirrhosis",
"9a": "9a-ravel-task-black-hispanic", "9b": "9b-ravel-task-nugent-category", "9c": "9c-ravel-task-white-black"}
dataset = args.dataset
if dataset != "all":
datasets = {dataset: datasets[dataset]}
test_size = 0.1
sumzero_lambda = float(args.sumzero)
l1_lambda = float(args.l1)
use_weight_constraint = True
n_run = 20
# hyper-parameters for network
cascade_level = int(args.level)
bottle_dim = 1
latent_dim = 1
output_dim = 1
batch_size = 32
epochs = 200
# regularize sum of weights at each cascade to be 0 and regularize weights to be sparse
class SumZeroL1Reg(regularizers.Regularizer):
def __init__(self, sumzero_lambda=1e0, l1_lambda=1e-2):
self.sumzero_lambda = K.cast_to_floatx(sumzero_lambda)
self.l1_lambda = K.cast_to_floatx(l1_lambda)
def __call__(self, w):
sumzero_reg = 0
sumzero_reg += self.sumzero_lambda * K.square(K.sum(w))
l1_reg = 0
l1_reg += self.l1_lambda * K.sum(K.abs(w))
return sumzero_reg + l1_reg
def get_config(self):
return {'sumzero_lambda': float(self.sumzero_lambda),
'l1_lambda': float(self.l1_lambda)}
auc_dataset_run = []
for dataset in list(datasets.values()):
start_date_time = datetime.datetime.now()
start_time = timeit.default_timer()
# read data from file
df_x = pd.read_csv("./data/{}-x.csv".format(dataset), header=0, sep=",")
df_y = pd.read_csv("./data/{}-y.csv".format(dataset), header=0, sep=",")
X = df_x.iloc[:, 1:]
X_rowname = df_x.iloc[:, 0]
y = df_y.iloc[:, 1]
X = np.array(X)
y = np.array(y)
y = y.reshape(-1, 1)
n_sample = X.shape[0]
n_feature = X.shape[1]
print("dataset={}, n_samples={}, n_features={}".format(dataset, n_sample, n_feature))
print("cascade_lvl={}, sumzero_lambda={}, l1_lambda={}".format(cascade_level, sumzero_lambda, l1_lambda))
auc_run = np.zeros(n_run)
for run in range(n_run):
print("run={}".format(run))
# split data to train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=run, stratify=y)
# construct network
time1 = timeit.default_timer()
input_dim = n_feature
# Encoder
x = Input(shape=(input_dim,))
# concat layer for all z
concat_z = []
for level_id in range(cascade_level):
x_log = Lambda(lambda t: K.log(t))(x)
if use_weight_constraint == True:
b = Dense(bottle_dim, activation='linear',
kernel_regularizer=SumZeroL1Reg(sumzero_lambda=sumzero_lambda, l1_lambda=l1_lambda))(x_log)
else:
b = Dense(bottle_dim, activation='linear')(x_log)
z = b
concat_z.append(z)
if cascade_level == 1:
all_z = z
else:
all_z = Concatenate()(concat_z)
# Decoder
decoder = Sequential([Dense(output_dim, input_dim=cascade_level*latent_dim, activation='sigmoid')])
y_pred = decoder(all_z)
# train network
model = Model(inputs=x, outputs=y_pred, name='bottleneck_model')
opt = optimizers.Adam()
model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy'])
hist = model.fit(X_train, y_train, shuffle=True, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=0)
time2 = timeit.default_timer()
print("runtime of training network: {}(s)".format(round(time2 - time1, 2)))
# compute auc on test set
y_test_pred = model.predict(X_test)
y_test_pred_round = np.around(y_test_pred)
auc = roc_auc_score(y_test, y_test_pred)
print("auc={}".format(round(auc, 4)))
auc_run[run] = auc
# save weight matrices when only train network on full dataset once
if n_run == 1:
# obtain weights of the log-contrast layer for each cascade level
# (i.e. layers at position 0, 2, ...)
with open('wo_attn_wei_logs_{}_lvl_{}_s0_{}_l1_{}_run{}.csv'.format(dataset, cascade_level, sumzero_lambda,
l1_lambda, run), 'w') as f:
f.write("cascade_lvl_id, weight_id, weight_value\n")
W_z = []
for level_id in range(cascade_level):
weights_first_layer = model.get_weights()[2*level_id]
w_zi = [weight[0] for weight in weights_first_layer]
w_zi = np.array(w_zi)
w_zi = np.around(w_zi, 2) + 0.0
w_zi_sum = round(w_zi.sum(), 2)
print("level_id={}, w_zi={}, w_zi_sum={}".format(level_id, w_zi, str(w_zi_sum)))
# save result to file
for weight_id in range(len(w_zi)):
line = str(level_id+1) + "," + str(weight_id+1) + "," + str(w_zi[weight_id]) + "\n"
f.write(line)
W_z.append(w_zi)
W_z = np.array(W_z)
# delete trained network to free memory
del model, decoder
K.clear_session()
end_date_time = datetime.datetime.now()
end_time = timeit.default_timer()
runtime = round(end_time-start_time, 2)
auc_run = np.around(auc_run, 4)
avg_auc = round(np.mean(auc_run), 4)
std_err = round(np.std(auc_run) / np.sqrt(n_run), 2)
print("dataset={}, cascade_lvl={}, sumzero_lambda={}, l1_lambda={}".format(dataset, cascade_level, sumzero_lambda, l1_lambda))
print("auc_run=[{}]".format(",".join(map(str, auc_run))))
print("avg_auc={}, std_err={}".format(avg_auc, std_err))
print("start date time: {} and end date time: {}".format(start_date_time, end_date_time))
print("runtime: {}(s)".format(runtime))
# save result to file
with open('wo_attn_auc_{}_lvl_{}_s0_{}_l1_{}.txt'.format(dataset, cascade_level, sumzero_lambda, l1_lambda), 'w') as f:
f.write("dataset={}, cascade_lvl={}, sumzero_lambda={}, l1_lambda={}\n".format(dataset, cascade_level, sumzero_lambda, l1_lambda))
f.write("auc_run=[{}]\n".format(",".join(map(str, auc_run))))
f.write("avg_auc={}, std_err={}\n".format(avg_auc, std_err))
f.write("runtime: {}(s)".format(runtime))
# store auc of n_run of each dataset
auc_dataset_run.append(auc_run)
# plot auc for each dataset
fig, ax = plt.subplots(figsize=(10, 5))
sns.boxplot(x=list(datasets.values()), y=auc_dataset_run, notch=False)
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
ax.set_ylabel("AUC")
plt.savefig("wo_attn_auc_{}_lvl_{}_s0_{}_l1_{}.pdf".format(args.dataset, cascade_level, sumzero_lambda, l1_lambda), bbox_inches="tight")
plt.close()
# save result to csv file
n_dataset = len(datasets)
with open('wo_attn_auc_{}_lvl_{}_s0_{}_l1_{}.csv'.format(args.dataset, cascade_level, sumzero_lambda, l1_lambda), 'w') as f:
f.write("dataset, cascade_lvl, sumzero_lambda, l1_lambda, bootstrapp, auc\n")
for data_id in range(n_dataset):
for auc_id in range(n_run):
data_name = list(datasets.values())[data_id]
line = data_name + "," + str(cascade_level) + "," + str(sumzero_lambda) + "," + str(l1_lambda) + "," + \
str(auc_id) + "," + str(auc_dataset_run[data_id][auc_id]) + "\n"
f.write(line)