forked from goodmoo02/data_augmentation_for_yolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_aug_for_yolo.py
74 lines (52 loc) · 1.63 KB
/
data_aug_for_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import cv2
import random
import copy
def RandomFlip(img,bboxes,mode=1,p=1.0):
# mode : 0 상하 반전 1 좌우 반전
src = copy.deepcopy(img)
bbox = copy.deepcopy(bboxes)
if random.random() < p:
print("flip 실행")
dst = cv2.flip(src, mode)
for i in range(len(bbox)):
if mode == 0:
bbox[i][2] = 1 - bbox[i][2]
elif mode == 1:
bbox[i][1] = 1 - bbox[i][1]
return dst,bbox
print("flip 미실행")
return img, bboxes
def RandomScale(img, bbox, scale=0.7, p=1.0):
src = copy.deepcopy(img)
bbox = copy.deepcopy(bbox)
if random.random() >= p:
return src,bbox
dsize = (int(src.shape[1] * scale),int(src.shape[0] * scale))
dst = np.zeros(src.shape)
src = cv2.resize(src,dsize,interpolation=cv2.INTER_AREA)
# print(src.shape)
for i in range(src.shape[0]):
for j in range(src.shape[1]):
dst[i][j] = src[i][j]
for i in range(len(bbox)):
for j in range(5):
if j != 0:
bbox[i][j] = bbox[i][j] * scale
return dst,bbox
def RandomRotate(img,angle,scale=1.0,p=1.0):
if random.random() > p:
print("rotate 실행")
return img
H = img.shape[0]
W = img.shape[1]
matrix = cv2.getRotationMatrix2D((W / 2,H / 2),angle,scale)
rotated = cv2.warpAffine(img,matrix,(W,H))
return rotated
if __name__ == "__main__":
img = cv2.imread("lena.jpg")
cv2.imshow("img1", img)
img2, _ = RandomResize(img, [])
cv2.imshow("img2", img2)
cv2.imwrite("lena_resize.jpg", img2)
cv2.waitKey(0)