-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathinference.py
185 lines (157 loc) · 7.54 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import glob
import os
import os.path as osp
from pathlib import Path
import soundfile as sf
import torch
import torchvision
from huggingface_hub import snapshot_download
from moviepy.editor import AudioFileClip, VideoFileClip
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from foleycrafter.models.onset import torch_utils
from foleycrafter.models.time_detector.model import VideoOnsetNet
from foleycrafter.pipelines.auffusion_pipeline import Generator, denormalize_spectrogram
from foleycrafter.utils.util import build_foleycrafter, read_frames_with_moviepy
vision_transform_list = [
torchvision.transforms.Resize((128, 128)),
torchvision.transforms.CenterCrop((112, 112)),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
video_transform = torchvision.transforms.Compose(vision_transform_list)
def args_parse():
config = argparse.ArgumentParser()
config.add_argument("--prompt", type=str, default="", help="prompt for audio generation")
config.add_argument("--nprompt", type=str, default="", help="negative prompt for audio generation")
config.add_argument("--seed", type=int, default=42, help="ramdom seed")
config.add_argument("--semantic_scale", type=float, default=1.0, help="visual content scale")
config.add_argument("--temporal_scale", type=float, default=0.2, help="temporal align scale")
config.add_argument("--input", type=str, default="examples/sora", help="input video folder path")
config.add_argument("--ckpt", type=str, default="checkpoints/", help="checkpoints folder path")
config.add_argument("--save_dir", type=str, default="output/", help="generation result save path")
config.add_argument(
"--pretrain",
type=str,
default="auffusion/auffusion-full-no-adapter",
help="audio generator pretrained checkpoint path",
)
config.add_argument("--device", type=str, default="cuda")
config = config.parse_args()
return config
def build_models(config):
# download ckpt
pretrained_model_name_or_path = config.pretrain
if not os.path.isdir(pretrained_model_name_or_path):
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
fc_ckpt = "ymzhang319/FoleyCrafter"
if not os.path.isdir(fc_ckpt):
fc_ckpt = snapshot_download(fc_ckpt, local_dir=config.ckpt)
# ckpt path
temporal_ckpt_path = osp.join(config.ckpt, "temporal_adapter.ckpt")
# load vocoder
vocoder_config_path = fc_ckpt
vocoder = Generator.from_pretrained(vocoder_config_path, subfolder="vocoder").to(config.device)
# load time_detector
time_detector_ckpt = osp.join(osp.join(config.ckpt, "timestamp_detector.pth.tar"))
time_detector = VideoOnsetNet(False)
time_detector, _ = torch_utils.load_model(time_detector_ckpt, time_detector, device=config.device, strict=True)
# load adapters
pipe = build_foleycrafter().to(config.device)
ckpt = torch.load(temporal_ckpt_path)
# load temporal adapter
if "state_dict" in ckpt.keys():
ckpt = ckpt["state_dict"]
load_gligen_ckpt = {}
for key, value in ckpt.items():
if key.startswith("module."):
load_gligen_ckpt[key[len("module.") :]] = value
else:
load_gligen_ckpt[key] = value
m, u = pipe.controlnet.load_state_dict(load_gligen_ckpt, strict=False)
print(f"### Control Net missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
# load semantic adapter
pipe.load_ip_adapter(
osp.join(config.ckpt, "semantic"), subfolder="", weight_name="semantic_adapter.bin", image_encoder_folder=None
)
ip_adapter_weight = config.semantic_scale
pipe.set_ip_adapter_scale(ip_adapter_weight)
return pipe, vocoder, time_detector
def run_inference(config, pipe, vocoder, time_detector):
controlnet_conditioning_scale = config.temporal_scale
os.makedirs(config.save_dir, exist_ok=True)
input_list = glob.glob(f"{config.input}/*.mp4")
assert len(input_list) != 0, "input list is empty!"
generator = torch.Generator(device=config.device)
generator.manual_seed(config.seed)
image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter", subfolder="models/image_encoder"
).to(config.device)
input_list.sort()
with torch.no_grad():
for input_video in input_list:
print(f" >>> Begin Inference: {input_video} <<< ")
frames, duration = read_frames_with_moviepy(input_video, max_frame_nums=150)
time_frames = torch.FloatTensor(frames).permute(0, 3, 1, 2)
time_frames = video_transform(time_frames)
time_frames = {"frames": time_frames.unsqueeze(0).permute(0, 2, 1, 3, 4)}
preds = time_detector(time_frames)
preds = torch.sigmoid(preds)
# duration
# import ipdb; ipdb.set_trace()
time_condition = [
-1 if preds[0][int(i / (1024 / 10 * duration) * 150)] < 0.5 else 1
for i in range(int(1024 / 10 * duration))
]
time_condition = time_condition + [-1] * (1024 - len(time_condition))
# w -> b c h w
time_condition = (
torch.FloatTensor(time_condition)
.unsqueeze(0)
.unsqueeze(0)
.unsqueeze(0)
.repeat(1, 1, 256, 1)
.to("cuda")
)
images = image_processor(images=frames, return_tensors="pt").to("cuda")
image_embeddings = image_encoder(**images).image_embeds
image_embeddings = torch.mean(image_embeddings, dim=0, keepdim=True).unsqueeze(0).unsqueeze(0)
neg_image_embeddings = torch.zeros_like(image_embeddings)
image_embeddings = torch.cat([neg_image_embeddings, image_embeddings], dim=1)
name = Path(input_video).stem
name = name.replace("+", " ")
sample = pipe(
prompt=config.prompt,
negative_prompt=config.nprompt,
ip_adapter_image_embeds=image_embeddings,
image=time_condition,
# audio_length_in_s=10,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=25,
height=256,
width=1024,
output_type="pt",
generator=generator,
# guidance_scale=0,
)
audio_img = sample.images[0]
audio = denormalize_spectrogram(audio_img)
audio = vocoder.inference(audio, lengths=160000)[0]
audio_save_path = osp.join(config.save_dir, "audio")
video_save_path = osp.join(config.save_dir, "video")
os.makedirs(audio_save_path, exist_ok=True)
os.makedirs(video_save_path, exist_ok=True)
audio = audio[: int(duration * 16000)]
save_path = osp.join(audio_save_path, f"{name}.wav")
sf.write(save_path, audio, 16000)
audio = AudioFileClip(osp.join(audio_save_path, f"{name}.wav"))
video = VideoFileClip(input_video)
audio = audio.subclip(0, duration)
video.audio = audio
video = video.subclip(0, duration)
os.makedirs(video_save_path, exist_ok=True)
video.write_videofile(osp.join(video_save_path, f"{name}.mp4"))
if __name__ == "__main__":
config = args_parse()
pipe, vocoder, time_detector = build_models(config)
run_inference(config, pipe, vocoder, time_detector)