-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.go
240 lines (209 loc) · 6.34 KB
/
generate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
package goabnf
import (
"bytes"
"errors"
"math/rand"
"strings"
)
// Generate is an experimental feature that consumes a seed for
// a pseudo-random number generator, used to randomly travel through
// the grammar given a rulename to work on.
// With this, it provides reproducibility, usefull for fuzz crashers.
//
// You can leverage its capacities (maximum repetitions, length
// threshold, etc.) with the functional options.
//
// It is a good capability for testing and fuzzing parsers during
// testing, compliance, fuzzing or optimization.
func (g *Grammar) Generate(seed int64, rulename string, opts ...GenerateOption) ([]byte, error) {
if err := checkCanGenerateSafely(g, rulename); err != nil {
return nil, err
}
// Use a pseudo-random number generator
rand := rand.NewSource(seed)
// Define conditions from options
options := &genOpts{
repMax: 16,
threshold: 256,
}
for _, opt := range opts {
opt.apply(options)
}
// Generate actual content (rule exists, checked first)
rule := GetRule(rulename, g.Rulemap)
out := []byte{}
generateAlt(rand, g, &out, rule.Alternation, options)
return out, nil
}
func generateAlt(rand rand.Source, g *Grammar, out *[]byte, alt Alternation, options *genOpts) {
// Select any possible path in the alternation
cnt := alt.Concatenations[int(rand.Int63())%len(alt.Concatenations)]
// Travel through all the repetitions
for _, rep := range cnt.Repetitions {
repmax := rep.Max
if repmax == inf {
repmax = options.repMax
}
torep := rep.Min + int(rand.Int63())%(repmax-rep.Min+1)
for i := 0; generateKeepGoing(i, torep, rep.Min, len(*out), options.threshold); i++ {
switch elem := rep.Element.(type) {
case ElemRulename:
rule := GetRule(elem.Name, g.Rulemap)
generateAlt(rand, g, out, rule.Alternation, options)
case ElemOption:
if (rand.Int63() % 2) == 0 {
generateAlt(rand, g, out, elem.Alternation, options)
}
case ElemGroup:
generateAlt(rand, g, out, elem.Alternation, options)
case ElemNumVal:
switch elem.Status {
case StatRange:
min, max := atob(elem.Elems[0], elem.Base), atob(elem.Elems[1], elem.Base)
appendPtr(out, min+byte(rand.Int63())%(max-min+1))
case StatSeries:
for _, v := range elem.Elems {
appendPtr(out, atob(v, elem.Base))
}
}
case ElemCharVal:
for _, val := range elem.Values {
if !elem.Sensitive && (int(rand.Int63())%2) == 0 {
val = bytes.ToUpper([]byte{val})[0]
}
appendPtr(out, val)
}
}
// Prose-val is not covered, checked before to avoid generation
}
}
}
func appendPtr(slc *[]byte, v ...byte) {
b := *slc
b = append(b, v...)
*slc = b
}
func generateKeepGoing(i, torep, minrep, lenout, threshold int) bool {
// If can do no run and reached threshold, skip
if i == 0 && minrep == 0 && lenout >= threshold {
return false
}
return i < torep
}
// GenerateOption is an option for the *Grammar.Generate method.
type GenerateOption interface {
apply(*genOpts)
}
type genOpts struct {
repMax int
threshold int
}
type repMaxOption int
// WithRepMax defines the maximum repetition to stop generating at.
func WithRepMax(repMax int) repMaxOption {
return repMaxOption(repMax)
}
func (opt repMaxOption) apply(opts *genOpts) {
opts.repMax = int(opt)
}
type thresholdOption int
// WithThreshold defines the length threshold to stop generating at.
func WithThreshold(threshold int) thresholdOption {
return thresholdOption(threshold)
}
func (opt thresholdOption) apply(opts *genOpts) {
opts.threshold = int(opt)
}
// checkCanGenerateSafely returns no error if the rule can be generated
// safely i.e. if the rule can exist without infinite recursion, AND if it
// does not contain a prose-val as it could not generate from it.
// Factually, it checks if all involved rules have no path v such that it
// produces a cycle (v:rule-*->rule) AND that this path is mandatory
// (no option, no repetition with a minimum of zero).
func checkCanGenerateSafely(g *Grammar, rulename string) error {
rule := GetRule(rulename, g.Rulemap)
if rule == nil {
return &ErrRuleNotFound{
Rulename: rulename,
}
}
knownRules := map[string]struct{}{
rulename: {},
}
if err := checkCanGenerateSafelyAlt(g, knownRules, rule.Alternation); err != nil {
if err, ok := err.(*ErrCyclicRule); ok {
return err
}
return &ErrCyclicRule{
Rulename: rulename,
}
}
return nil
}
func checkCanGenerateSafelyAlt(g *Grammar, knownRules map[string]struct{}, alt Alternation) error {
errs := make([]error, len(alt.Concatenations))
for alti, concat := range alt.Concatenations {
errs[alti] = checkCanGenerateSafelyConcat(g, knownRules, concat)
}
allErrors := true
for i := 0; i < len(errs) && allErrors; i++ {
if errs[i] == nil {
allErrors = false
}
}
if allErrors {
return errors.New("multiple errors")
}
return nil
}
func checkCanGenerateSafelyConcat(g *Grammar, knownRules map[string]struct{}, concat Concatenation) error {
for _, rep := range concat.Repetitions {
// If the repetition is not mandatory, we can escape so can
// generate safely.
if rep.Min == 0 {
continue
}
// Deal with the repetition itself then.
switch elem := rep.Element.(type) {
case ElemRulename:
// Copy rules to only focus on rules that made use come here.
// If shared with others, the dependency graph can lead to the same rule
// from another path without it being a cycle, thus must be handled.
scopeRules := cpMap(knownRules)
for known := range scopeRules {
if strings.EqualFold(elem.Name, known) {
return &ErrCyclicRule{
Rulename: elem.Name,
}
}
}
rule := GetRule(elem.Name, g.Rulemap)
scopeRules[elem.Name] = struct{}{}
if err := checkCanGenerateSafelyAlt(g, scopeRules, rule.Alternation); err != nil {
if err, ok := err.(*ErrCyclicRule); ok {
return err
}
return &ErrCyclicRule{
Rulename: elem.Name,
}
}
case ElemGroup:
if err := checkCanGenerateSafelyAlt(g, knownRules, elem.Alternation); err != nil {
return err
}
case ElemProseVal:
return ErrHandlingProseVal
// Other types are not considered for the following reasons:
// - option: equivalent to rep.min==0, escapable path even if could be cyclic
// - num-val, char-val: termination paths, can't be cyclic
}
}
return nil
}
func cpMap[T comparable, V any](m map[T]V) map[T]V {
n := make(map[T]V, len(m))
for k, v := range m {
n[k] = v
}
return n
}