-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
401 lines (319 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import cvxpy as cp
import seaborn as sns
import data
import argparse
import itertools
import collections
from scipy import sparse
MEDIUM_SIZE = 24
SMALL_SIZE = 0.8 * MEDIUM_SIZE
SMALLER_SIZE = 0.6 * SMALL_SIZE
BIGGER_SIZE = 1.5 * MEDIUM_SIZE
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALLER_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALLER_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALLER_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, default='tlc', choices=['tlc', 'synthetic', 'synthetic_lp', 'venmo', 'safegraph'], help='Dataset to run experiments on (see available choices)')
parser.add_argument('--filename', type=str, default='data/venmo_jul_2018.json', help='Filename of Venmo dataset (only for venmo data)')
parser.add_argument('--num_iters', type=int, default=1, help='Number of runs of the algorithm')
parser.add_argument('-B', type=str, default='0', help='Total budget')
parser.add_argument('-L', type=int, default=0, help='Bailout value (if -1 sets it to B). Safegraph data have custom bailouts')
parser.add_argument('--method', type=str, default='fractional', choices=['fractional', 'discrete'], help='Bailout method')
parser.add_argument('--gini', default=1, type=float, help='Gini coefficient upper bound')
parser.add_argument('--verbose', action='store_true', help='Verbose flag for solver')
parser.add_argument('--gini_type', type=str, default='sgc', choices=['sgc', 'standard'], help='Type of gini coefficient constraint')
parser.add_argument('--solver', type=str, default='ECOS', help='Solver to use from cvxpy solvers')
parser.add_argument('--no_surplus_budget', action='store_true', help='No Surplus budget flag')
return parser.parse_args()
def get_mean_std(x):
x = np.array(x)
return x.mean(0), x.std(0)
def generic_gini_coefficient(n, W, row_sum, col_sum, z_bar):
varpi_bar = np.zeros((n, n))
for i in range(n):
for j in range(n):
varpi_bar[i, j] = np.abs(z_bar[i, 0] - z_bar[j, 0])
num = np.sum(W * varpi_bar)
den = np.sum((row_sum + col_sum) * z_bar[:, 0])
if np.isclose(den, 0):
return 0
else:
return num / den
def generate_generic_gini_coefficient_constraints(n, W, row_sum, col_sum, z_bar, varpi_bar, gini):
return cp.sum(cp.multiply(W, varpi_bar)) <= gini * cp.sum(cp.multiply(row_sum + col_sum, z_bar[:, 0]))
def single_period_clearing(L_inst, b_inst, c_inst, B, n, L_bailouts, verbose=False, gini=1, gini_type='sgc', solver='ECOS'):
p = (b_inst + L_inst.sum(-1)).reshape((n, 1))
p_bar = cp.Variable((n, 1))
z_bar = cp.Variable((n, 1))
c_inst = c_inst.reshape((n, 1))
objective = cp.Maximize(cp.sum(p_bar))
A_inst = np.copy(L_inst)
if gini < np.inf:
varpi_bar = cp.Variable((n, n))
for i in range(n):
A_inst[i, :] /= p[i, 0]
# A_inst = sparse.csr_matrix(A_inst)
constraints = [p_bar >= 0, z_bar >= 0, z_bar <= L_bailouts, cp.sum(z_bar) <= B, p_bar <= p, p_bar <= A_inst.T @ p_bar + c_inst + z_bar]
beta_inst = A_inst.sum(-1)
col_sum = A_inst.sum(0)
if gini < 1:
constraints.append(varpi_bar >= 0)
for i in range(n):
for j in range(n):
constraints.append(-varpi_bar[i, j] <= z_bar[i, 0] - z_bar[j, 0])
constraints.append(z_bar[i, 0] - z_bar[j, 0] <= varpi_bar[i, j])
if gini_type == 'sgc':
constraints.append(generate_generic_gini_coefficient_constraints(n, A_inst, beta_inst, col_sum, z_bar, varpi_bar, gini))
elif gini_type == 'standard':
constraints.append(generate_generic_gini_coefficient_constraints(n, 1.0 - np.eye(n), (n - 1) * np.ones(n), (n - 1) * np.ones(n), z_bar, varpi_bar, gini))
prob = cp.Problem(objective, constraints)
result = prob.solve(verbose=verbose, solver=solver)
beta_max = beta_inst.max()
if gini_type == 'sgc':
gc = generic_gini_coefficient(n, A_inst, beta_inst, col_sum, z_bar.value)
elif gini_type == 'standard':
gc = generic_gini_coefficient(n, 1 - np.eye(n), (n - 1) * np.ones(n), (n - 1) * np.ones(n), z_bar.value)
zz = np.zeros_like(z_bar.value)
zz[0] = 1
d = np.zeros((n, n))
for i in range(n):
for j in range(n):
d[i, j] = abs(zz[i, 0] - zz[j, 0])
num = np.sum(A_inst * d)
den = np.sum((A_inst.sum(0) + A_inst.sum(-1)) * zz[:, 0])
if verbose:
print('Primal program')
print('Clearing payments', p_bar.value.T)
print('Bailouts', z_bar.value.T)
print('Dual program')
print('Solvent nodes', np.isclose(p_bar.value, p))
print('Bailout constraint', constraints[2].dual_value)
print('Solvency constraint', constraints[3].dual_value)
print('Default constraint', constraints[4].dual_value)
beta_inst = beta_inst.reshape(n)
surplus_assets = c_inst + z_bar.value + A_inst.T @ p_bar.value - p_bar.value
return p_bar.value, z_bar.value, p, result, beta_inst, beta_max, gc, surplus_assets[:, 0]
def sequential_clearing(L, b, xi, B, n, T, L_bailouts, method='fractional', verbose=False, gini=1, gini_type='sgc', solver='ECOS', surplus_budget=False):
if method == 'fractional':
p_bar = np.zeros((T, n, 1))
z_bar = np.zeros((T, n, 1))
L_bar = np.zeros((T, n, n))
p = np.zeros((T, n, 1))
beta = np.zeros((T, n))
c = np.zeros((T+1, n))
beta_max = np.zeros((T, 1))
rewards = np.zeros(T)
gcs = np.zeros(T)
budget = B * np.ones(T+1)
for t in range(T):
if t == 0:
c[t, :] = xi[t, :]
p_bar[t, :, :], z_bar[t, :, :], p[t, :, :], rewards[t], beta[t, :], beta_max[t], gcs[t], c[t+1,:] = single_period_clearing(L[t, :, :], b[t, :], c[t, :], budget[t], n, L_bailouts[t, :, :], verbose, gini, gini_type, solver)
else:
# Calculate uncleared liabilities
L_bar[t, :, :] = L_bar[t - 1, :, :] + L[t, :, :]
c[t, :] += xi[t, :]
p_bar[t, :, :], z_bar[t, :, :], p[t, :, :], rewards[t], beta[t, :], beta_max[t], gcs[t], c[t+1,:] = single_period_clearing(L_bar[t, :, :], b[t, :], xi[t, :], budget[t], n, L_bailouts[t, :, :], verbose, gini, gini_type, solver)
if surplus_budget:
budget[t+1] += budget[t] - z_bar[t, :, 0].sum()
for i in range(n):
for j in range(n):
L_bar[t, i, j] = L[t, i, j] * (1 - p_bar[t, i, 0] / p[t, i, 0])
cum_reward = np.cumsum(rewards)
return p_bar, z_bar, cum_reward, beta, beta_max, gcs, c
elif method == 'discrete':
# Solve fractional problem
p_bar, z_bar, cum_reward, beta, beta_max, gcs, c = sequential_clearing(L, b, xi, B, n, T, L_bailouts, method='fractional', verbose=verbose, gini=gini, gini_type=gini_type, solver=solver, surplus_budget=surplus_budget)
z_bar_rounded = np.zeros_like(z_bar)
# Rounding
while True:
for t in range(T):
for i in range(n):
z_bar_rounded[t, i, 0] = 1.0 * np.random.binomial(L_bailouts[t, i, 0], np.maximum(0, np.minimum(1, z_bar[t, i, 0] / L_bailouts[t, i, 0])))
if (gini >= 1 and np.all((z_bar_rounded).sum(-1).sum(-1) <= B + np.sqrt(B))) or(gini < 1 and gcs.max() <= gini and np.all((z_bar_rounded).sum(-1).sum(-1) <= B + np.sqrt(B))):
break
p_bar_rounded, _, cum_reward_rounded, beta_rounded, beta_max_rounded, gcs, c_disc = sequential_clearing(L, b, xi + z_bar_rounded.reshape(xi.shape), 0, n, T, L_bailouts, method='fractional', verbose=verbose, gini=1, gini_type=gini_type, solver=solver, surplus_budget=surplus_budget)
return p_bar_rounded, z_bar_rounded, cum_reward_rounded, beta_rounded, beta_max_rounded, gcs, c_disc
def assert_lp_condition(L, b):
n = b.shape[-1]
T = b.shape[0]
assert(np.all(b > 0))
p0 = (b[0, :] + L[0, :, :].sum(-1)).reshape((n, 1))
A0 = np.copy(L[0, :, :])
for i in range(n):
A0[i, :] /= p0[i, 0]
for t in range(1, T):
pt = (b[t, :] + L[t, :, :].sum(-1)).reshape((n, 1))
At = np.copy(L[t, :, :])
for i in range(n):
At[i, :] /= pt[i, 0]
# assert(np.allclose(At, A0))
return A0
if __name__ == '__main__':
args = get_args()
B_range = [float(x) for x in args.B.split(',')]
betas = collections.defaultdict(list)
betas_mean = {}
betas_std = {}
beta_maxs = collections.defaultdict(list)
beta_maxs_mean = {}
beta_maxs_std = {}
gcs = collections.defaultdict(list)
gcs_mean = {}
gcs_std = {}
p_bars = collections.defaultdict(list)
z_bars = collections.defaultdict(list)
cum_rewardss = collections.defaultdict(list)
p_bars_mean = {}
z_bars_mean = {}
p_bars_std = {}
z_bars_std = {}
cum_rewardss_mean = {}
cum_rewardss_std = {}
for B in B_range:
for _ in range(args.num_iters):
if args.name == 'tlc':
L, b, xi, loc2idx, idx2zone = data.load_tlc_data()
elif args.name == 'synthetic':
L, b, xi, loc2idx, idx2zone = data.generate_synthetic_data()
elif args.name == 'synthetic_lp':
L, b, xi, loc2idx, idx2zone = data.generate_synthetic_data_lp(T=20, n=10)
elif args.name == 'venmo':
L, b, xi, loc2idx, idx2zone = data.load_venmo_data(args.filename)
elif args.name == 'safegraph':
L, b, xi, L_bailouts, loc2idx, idx2zone = data.load_safegraph_data()
n, T = L.shape[1], L.shape[0]
if args.name != 'safegraph':
if args.L > 0:
L_bailouts = args.L * np.ones((T, n, 1))
else:
L_bailouts = B * np.ones((T, n, 1))
p_bar, z_bar, cum_rewards, beta, beta_max, gc, _ = sequential_clearing(L, b, xi, B, n, T, L_bailouts, method=args.method, verbose=args.verbose, gini=args.gini, gini_type=args.gini_type, solver=args.solver, surplus_budget=not args.no_surplus_budget)
p_bars[B].append(p_bar)
z_bars[B].append(z_bar)
cum_rewardss[B].append(cum_rewards)
beta_maxs[B].append(beta_max)
gcs[B].append(gc)
betas[B].append(beta)
p_bars_mean[B], p_bars_std[B] = get_mean_std(p_bars[B])
z_bars_mean[B], z_bars_std[B] = get_mean_std(z_bars[B])
cum_rewardss_mean[B], cum_rewardss_std[B] = get_mean_std(cum_rewardss[B])
beta_maxs_mean[B], beta_maxs_std[B] = get_mean_std(beta_maxs[B])
betas_mean[B], betas_std[B] = get_mean_std(betas[B])
gcs_mean[B], gcs_std[B] = get_mean_std(gcs[B])
fig, ax1 = plt.subplots(figsize=(10, 5))
ax2 = ax1.twinx()
t_range = (1 + np.arange(T)).astype(str)
ax1.set_ylabel('Clearing Payments')
ax2.set_ylabel('Cummulative Reward', color='gold')
ax1.set_xlabel('Time')
plt.title('Sequential Clearing ($w(t) = {}$)'.format(B))
idx = np.argsort(-p_bars_mean[B].sum(0).reshape(n))[:5]
labels = [idx2zone[i] for i in idx]
for i, label in zip(idx, labels):
ax1.plot(t_range, p_bars_mean[B][:, i, 0], marker='o', linewidth=1, label=label)
ax1.fill_between(t_range, p_bars_mean[B][:, i, 0] - p_bars_std[B][:, i, 0], p_bars_mean[B][:, i, 0] + p_bars_std[B][:, i, 0], alpha=0.3)
ax2.plot(t_range, cum_rewardss_mean[B], color='gold', marker='o', linewidth=4)
ax2.fill_between(t_range, cum_rewardss_mean[B] - cum_rewardss_std[B], cum_rewardss_mean[B] + cum_rewardss_std[B], alpha=0.3, color='gold')
ax2.tick_params(axis='y', colors='gold')
fig.tight_layout()
ax1.legend().set_zorder(-np.inf)
ax2.legend().set_zorder(-np.inf)
plt.savefig('figures/{}_{}_sequential_clearing_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
fig, ax1 = plt.subplots(figsize=(10, 5))
ax1.set_ylabel('Bailouts')
ax1.set_xlabel('Time')
plt.title('Bailouts ($w(t) = {}$)'.format(B))
idx = np.argsort(-z_bars_mean[B].sum(0).reshape(n))[:5]
labels = [idx2zone[i] for i in idx]
for i, label in zip(idx, labels):
ax1.plot(t_range, z_bars_mean[B][:, i, 0], marker='o', linewidth=1, label=label)
ax1.fill_between(t_range, np.maximum(0, z_bars_mean[B][:, i, 0] - z_bars_std[B][:, i, 0]), z_bars_mean[B][:, i, 0] + z_bars_std[B][:, i, 0], alpha=0.3)
ax1.legend()
fig.tight_layout()
plt.savefig('figures/{}_{}_sequential_clearing_bailouts_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
plt.figure(figsize=(10, 5))
plt.ylabel('Worst financial connectivity')
plt.ylabel('Worst financial connectivity')
plt.xlabel('Time')
for B in B_range:
plt.plot(t_range, beta_maxs_mean[B][:, 0], marker='o', label='w(t) = {}'.format(B))
plt.fill_between(t_range, beta_maxs_mean[B][:, 0] - beta_maxs_std[B][:, 0], beta_maxs_mean[B][:, 0] + beta_maxs_std[B][:, 0], alpha=0.3)
plt.legend()
plt.savefig('figures/{}_{}_worst_financial_connectivity_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
plt.figure(figsize=(10, 5))
if args.gini_type == 'sgc':
plt.title('Spatial Gini Coefficient {}'.format('($g = {}$)'.format(args.gini) if args.gini < 1 else ''))
plt.ylabel('SGC')
if args.gini_type == 'standard':
plt.title('Standard Gini Coefficient {}'.format('($g = {}$)'.format(args.gini) if args.gini < 1 else ''))
plt.ylabel('GC')
plt.xlabel('Time')
for B in B_range:
plt.plot(t_range, gcs_mean[B], marker='o', label='w(t) = {}'.format(B))
plt.fill_between(t_range, gcs_mean[B] - gcs_std[B], gcs_mean[B] + gcs_std[B], alpha=0.3)
plt.legend()
plt.tight_layout()
plt.ylim(0, 1)
plt.savefig('figures/{}_{}_gini_coefficient_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
fig, ax = plt.subplots(figsize=(5, 5))
# plt.title('Bailouts vs. Payments')
plt.xlabel('Payments')
plt.ylabel('Bailouts')
palette = itertools.cycle(sns.color_palette())
for B in B_range:
color_ols = next(palette)
color_rlm = next(palette)
p_bars_total = p_bars_mean[B].sum(0)
z_bars_total = z_bars_mean[B].sum(0)
R2 = np.corrcoef(p_bars_total[:, 0], z_bars_total[:, 0])[0, 1]
sns.regplot(x=p_bars_total, y=z_bars_total, ax=ax, color=color_ols)
sns.regplot(x=p_bars_total, y=z_bars_total, ax=ax, color=color_rlm, robust=True, scatter_kws={'alpha' : 1, 'color' : 'k'})
red_patch = mpatches.Patch(color=color_ols, label='OLS, w(t) = {}, R2 = {}'.format(B, round(R2, 3)))
blue_patch = mpatches.Patch(color=color_rlm, label='Robust LM, w(t) = {}'.format(B))
plt.legend(handles=[red_patch, blue_patch])
plt.tight_layout()
plt.savefig('figures/{}_{}_payments_vs_bailouts_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
fig, ax = plt.subplots(figsize=(5, 5))
# plt.title('Bailouts vs. Mean Financial Connectivity')
plt.xlabel('Mean Fin. Connectivity')
plt.ylabel('Bailouts')
palette = itertools.cycle(sns.color_palette())
for B in B_range:
color_ols = next(palette)
color_rlm = next(palette)
betas_total = betas_mean[B].mean(0)
z_bars_total = z_bars_mean[B].sum(0)
R2 = np.corrcoef(betas_total, z_bars_total[:, 0])[0, 1]
sns.regplot(x=betas_total, y=z_bars_total, ax=ax, color=color_ols)
sns.regplot(x=betas_total, y=z_bars_total, ax=ax, color=color_rlm, robust=True, scatter_kws={'alpha' : 1, 'color' : 'k'})
red_patch = mpatches.Patch(color=color_ols, label='OLS, w(t) = {}, R2 = {}'.format(B, round(R2, 3)))
blue_patch = mpatches.Patch(color=color_rlm, label='Robust LM, w(t) = {}'.format(B))
plt.legend(handles=[red_patch, blue_patch])
plt.tight_layout()
plt.savefig('figures/{}_{}_betas_vs_bailouts_{}_{}_{}.png'.format(args.method, args.name, B, args.gini, args.gini_type))
if args.gini < 1:
objective_with_fairness = {}
for B in B_range:
objective_with_fairness[B] = cum_rewardss_mean[B][-1]
cum_rewardss = collections.defaultdict(list)
cum_rewardss_mean = {}
cum_rewardss_std = {}
for B in B_range:
for _ in range(args.num_iters):
_, _, cum_rewards, _, _, gc, _ = sequential_clearing(L, b, xi, B, n, T, L_bailouts, method=args.method, verbose=args.verbose, gini=1, gini_type=args.gini_type, surplus_budget=not args.no_surplus_budget)
cum_rewardss[B].append(cum_rewards)
cum_rewardss_mean[B], cum_rewardss_std[B] = get_mean_std(cum_rewardss[B])
objective_without_fairness = {}
for B in B_range:
objective_without_fairness[B] = cum_rewardss_mean[B][-1]
for B in B_range:
print('PoF (w(t) = {}) = {}'.format(B, round(objective_without_fairness[B] / objective_with_fairness[B], 3)))