-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatlon-spherical.go
705 lines (631 loc) · 25.6 KB
/
latlon-spherical.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
package osgridref
import (
"fmt"
"math"
)
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Latitude/longitude spherical geodesy tools (c) Chris Veness 2002-2019 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/latlong.html */
/* www.movable-type.co.uk/scripts/geodesy-library.html#latlon-spherical */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
const (
π = math.Pi
metresToKm = 1.0 / 1000
metresToMiles = 1.0 / 1609.344
metresToNauticalMiles = 1.0 / 1852
earthRadius = 6_371_000.0 // Its equatorial radius is 6378 km, but its polar radius is 6357 km
)
/**
* Library of geodesy functions for operations on a spherical earth model.
*
* Includes distances, bearings, destinations, etc, for both great circle paths and rhumb lines,
* and other related functions.
*
* All calculations are done using simple spherical trigonometric formulae.
*
* @module latlon-spherical
*/
// note greek letters (e.g. φ, λ, θ) are used for angles in radians to distinguish from angles in
// degrees (e.g. lat, lon, brng)
/* LatLon - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Latitude/longitude points on a spherical model earth, and methods for calculating distances,
* bearings, destinations, etc on (orthodromic) great-circle paths and (loxodromic) rhumb lines.
*/
type LatLon struct {
Lat, Lon float64
}
/**
* Returns the distance along the surface of the earth from ‘this’ point to destination point.
*
* Uses haversine formula: a = sin²(Δφ/2) + cosφ1·cosφ2 · sin²(Δλ/2); d = 2 · atan2(√a, √(a-1)).
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} [radius=6371e3] - Radius of earth (defaults to mean radius in metres).
* @returns {number} Distance between this point and destination point, in same units as radius.
* @throws {TypeError} Invalid radius.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const d = p1.distanceTo(p2); // 404.3×10³ m
* const m = p1.distanceTo(p2, 3959); // 251.2 miles
*/
func (ll LatLon) DistanceTo(point LatLon) float64 {
// a = sin²(Δφ/2) + cos(φ1)⋅cos(φ2)⋅sin²(Δλ/2)
// δ = 2·atan2(√(a), √(1−a))
// see mathforum.org/library/drmath/view/51879.html for derivation
R := earthRadius
φ1 := ll.Lat * toRadians
λ1 := ll.Lon * toRadians
φ2 := point.Lat * toRadians
λ2 := point.Lon * toRadians
Δφ := φ2 - φ1
Δλ := λ2 - λ1
a := math.Sin(Δφ/2)*math.Sin(Δφ/2) + math.Cos(φ1)*math.Cos(φ2)*math.Sin(Δλ/2)*math.Sin(Δλ/2)
c := 2 * math.Atan2(math.Sqrt(a), math.Sqrt(1-a))
d := R * c
return d
}
/**
* Returns the initial bearing from ‘this’ point to destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Initial bearing in degrees from north (0°..360°).
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const b1 = p1.initialBearingTo(p2); // 156.2°
*/
func (ll LatLon) InitialBearingTo(point LatLon) float64 {
// tanθ = sinΔλ⋅cosφ2 / cosφ1⋅sinφ2 − sinφ1⋅cosφ2⋅cosΔλ
// see mathforum.org/library/drmath/view/55417.html for derivation
φ1 := ll.Lat * toRadians
φ2 := point.Lat * toRadians
Δλ := (point.Lon - ll.Lon) * toRadians
x := math.Cos(φ1)*math.Sin(φ2) - math.Sin(φ1)*math.Cos(φ2)*math.Cos(Δλ)
y := math.Sin(Δλ) * math.Cos(φ2)
θ := math.Atan2(y, x)
bearing := θ* toDegrees
return Wrap360(bearing)
}
/**
* Returns final bearing arriving at destination point from ‘this’ point; the final bearing will
* differ from the initial bearing by varying degrees according to distance and latitude.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {number} Final bearing in degrees from north (0°..360°).
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const b2 = p1.finalBearingTo(p2); // 157.9°
*/
func (ll LatLon) FinalBearingTo(point LatLon) float64 {
// get initial bearing from destination point to this point & reverse it by adding 180°
bearing := point.InitialBearingTo(ll) + 180
return Wrap360(bearing)
}
/**
* Returns the midpoint between ‘this’ point and destination point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @returns {LatLon} Midpoint between this point and destination point.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const pMid = p1.midpointTo(p2); // 50.5363°N, 001.2746°E
*/
//func (ll LatLon) MidpointTo(point LatLon) LatLon{
// // φm = atan2( sinφ1 + sinφ2, √( (cosφ1 + cosφ2⋅cosΔλ)² + cos²φ2⋅sin²Δλ ) )
// // λm = λ1 + atan2(cosφ2⋅sinΔλ, cosφ1 + cosφ2⋅cosΔλ)
// // midpoint is sum of vectors to two points: mathforum.org/library/drmath/view/51822.html
//
// φ1 := ll.Lat* toRadians;
// λ1 := ll.Lon* toRadians;
// φ2 := point.Lat* toRadians;
// Δλ := (point.Lon - ll.Lon)* toRadians;
//
// // get cartesian coordinates for the two points
// A := { x: math.Cos(φ1), y: 0, z: math.Sin(φ1) }; // place point A on prime meridian y=0
// B := { x: math.Cos(φ2)*math.Cos(Δλ), y: math.Cos(φ2)*math.Sin(Δλ), z: math.Sin(φ2) };
//
//// vector to midpoint is sum of vectors to two points (no need to normalise)
// C := { x: A.x + B.x, y: A.y + B.y, z: A.z + B.z };
//
// φm := math.Atan2(C.z, math.Sqrt(C.x*C.x + C.y*C.y));
// λm := λ1 + math.Atan2(C.y, C.x);
//
// lat := φm* toDegrees;
// lon := λm* toDegrees;
//
// return LatLon{Lat: lat, Lon: lon}
//}
/**
* Returns the point at given fraction between ‘this’ point and given point.
*
* @param {LatLon} point - Latitude/longitude of destination point.
* @param {number} fraction - Fraction between the two points (0 = this point, 1 = specified point).
* @returns {LatLon} Intermediate point between this point and destination point.
*
* @example
* const p1 = new LatLon(52.205, 0.119);
* const p2 = new LatLon(48.857, 2.351);
* const pInt = p1.intermediatePointTo(p2, 0.25); // 51.3721°N, 000.7073°E
*/
//intermediatePointTo(point, fraction) {
//if (!(point instanceof LatLon)) point = LatLon.parse(point); // allow literal forms
//if (this.equals(point)) return new LatLon(ll.Lat, ll.Lon); // coincident points
//
// φ1 = ll.Lat* toRadians, λ1 = ll.Lon* toRadians;
// φ2 = point.lat* toRadians, λ2 = point.lon* toRadians;
//
//// distance between points
// Δφ = φ2 - φ1;
// Δλ = λ2 - λ1;
// a = math.Sin(Δφ/2) * math.Sin(Δφ/2)
//+ math.Cos(φ1) * math.Cos(φ2) * math.Sin(Δλ/2) * math.Sin(Δλ/2);
// δ = 2 * math.Atan2(math.Sqrt(a), math.Sqrt(1-a));
//
// A = math.Sin((1-fraction)*δ) / math.Sin(δ);
// B = math.Sin(fraction*δ) / math.Sin(δ);
//
// x = A * math.Cos(φ1) * math.Cos(λ1) + B * math.Cos(φ2) * math.Cos(λ2);
// y = A * math.Cos(φ1) * math.Sin(λ1) + B * math.Cos(φ2) * math.Sin(λ2);
// z = A * math.Sin(φ1) + B * math.Sin(φ2);
//
// φ3 = math.Atan2(z, math.Sqrt(x*x + y*y));
// λ3 = math.Atan2(y, x);
//
// lat = φ3* toDegrees;
// lon = λ3* toDegrees;
//
//return new LatLon(lat, lon);
//}
/**
* Returns the destination point from ‘this’ point having travelled the given distance on the
* given initial bearing (bearing normally varies around path followed).
*
* @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
* @param {number} bearing - Initial bearing in degrees from north.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {LatLon} Destination point.
*
* @example
* const p1 = new LatLon(51.47788, -0.00147);
* const p2 = p1.destinationPoint(7794, 300.7); // 51.5136°N, 000.0983°W
*/
func (ll LatLon) DestinationPoint(distance float64, bearing float64) LatLon {
// sinφ2 = sinφ1⋅cosδ + cosφ1⋅sinδ⋅cosθ
// tanΔλ = sinθ⋅sinδ⋅cosφ1 / cosδ−sinφ1⋅sinφ2
// see mathforum.org/library/drmath/view/52049.html for derivation
δ := distance / earthRadius // angular distance in radians
θ := bearing * toRadians
φ1 := ll.Lat * toRadians
λ1 := ll.Lon * toRadians
sinφ2 := math.Sin(φ1)*math.Cos(δ) + math.Cos(φ1)*math.Sin(δ)*math.Cos(θ)
φ2 := math.Asin(sinφ2)
y := math.Sin(θ) * math.Sin(δ) * math.Cos(φ1)
x := math.Cos(δ) - math.Sin(φ1)*sinφ2
λ2 := λ1 + math.Atan2(y, x)
lat := φ2 * toDegrees
lon := λ2 * toDegrees
return LatLon{Lat: lat, Lon: lon}
}
/**
* Returns the point of intersection of two paths defined by point and bearing.
*
* @param {LatLon} p1 - First point.
* @param {number} brng1 - Initial bearing from first point.
* @param {LatLon} p2 - Second point.
* @param {number} brng2 - Initial bearing from second point.
* @returns {LatLon|null} Destination point (null if no unique intersection defined).
*
* @example
* const p1 = new LatLon(51.8853, 0.2545), brng1 = 108.547;
* const p2 = new LatLon(49.0034, 2.5735), brng2 = 32.435;
* const pInt = LatLon.intersection(p1, brng1, p2, brng2); // 50.9078°N, 004.5084°E
*/
func Intersection(p1 LatLon, brng1 float64, p2 LatLon, brng2 float64) (LatLon, bool) {
// see www.edwilliams.org/avform.htm#Intersection
φ1, λ1 := p1.Lat*toRadians, p1.Lon*toRadians
φ2, λ2 := p2.Lat*toRadians, p2.Lon*toRadians
θ13, θ23 := brng1*toRadians, brng2*toRadians
Δφ := φ2 - φ1
Δλ := λ2 - λ1
// angular distance p1-p2
δ12 := 2 * math.Asin(math.Sqrt(math.Sin(Δφ/2)*math.Sin(Δφ/2)+math.Cos(φ1)*math.Cos(φ2)*math.Sin(Δλ/2)*math.Sin(Δλ/2)))
if math.Abs(δ12) <= math.SmallestNonzeroFloat64 {
return p1, true
}
// initial/final bearings between points
cosθa := (math.Sin(φ2) - math.Sin(φ1)*math.Cos(δ12)) / (math.Sin(δ12) * math.Cos(φ1))
cosθb := (math.Sin(φ1) - math.Sin(φ2)*math.Cos(δ12)) / (math.Sin(δ12) * math.Cos(φ2))
θa := math.Acos(math.Min(math.Max(cosθa, -1), 1)) // protect against rounding errors
θb := math.Acos(math.Min(math.Max(cosθb, -1), 1)) // protect against rounding errors
θ12 := θa
if math.Sin(λ2-λ1) <= 0 {
θ12 = 2*π - θa
}
θ21 := 2*π - θb
if math.Sin(λ2-λ1) <= 0 {
θ21 = θb
}
α1 := θ13 - θ12 // angle 2-1-3
α2 := θ21 - θ23 // angle 1-2-3
if math.Sin(α1) == 0 && math.Sin(α2) == 0 {
// infinite intersections
return LatLon{}, false
}
if math.Sin(α1)*math.Sin(α2) < 0 {
// ambiguous intersection (antipodal?)
return LatLon{}, false
}
cosα3 := -math.Cos(α1)*math.Cos(α2) + math.Sin(α1)*math.Sin(α2)*math.Cos(δ12)
δ13 := math.Atan2(math.Sin(δ12)*math.Sin(α1)*math.Sin(α2), math.Cos(α2)+math.Cos(α1)*cosα3)
φ3 := math.Asin(math.Min(math.Max(math.Sin(φ1)*math.Cos(δ13)+math.Cos(φ1)*math.Sin(δ13)*math.Cos(θ13), -1), 1))
Δλ13 := math.Atan2(math.Sin(θ13)*math.Sin(δ13)*math.Cos(φ1), math.Cos(δ13)-math.Sin(φ1)*math.Sin(φ3))
λ3 := λ1 + Δλ13
lat := φ3 * toDegrees
lon := λ3 * toDegrees
return LatLon{Lat: lat, Lon: lon}, true
}
///**
// * Returns (signed) distance from ‘this’ point to great circle defined by start-point and
// * end-point.
// *
// * @param {LatLon} pathStart - Start point of great circle path.
// * @param {LatLon} pathEnd - End point of great circle path.
// * @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
// * @returns {number} Distance to great circle (-ve if to left, +ve if to right of path).
// *
// * @example
// * const pCurrent = new LatLon(53.2611, -0.7972);
// * const p1 = new LatLon(53.3206, -1.7297);
// * const p2 = new LatLon(53.1887, 0.1334);
// * const d = pCurrent.crossTrackDistanceTo(p1, p2); // -307.5 m
// */
//crossTrackDistanceTo(pathStart, pathEnd, radius=6371e3) {
//if (!(pathStart instanceof LatLon)) pathStart = LatLon.parse(pathStart); // allow literal forms
//if (!(pathEnd instanceof LatLon)) pathEnd = LatLon.parse(pathEnd); // allow literal forms
// R = radius;
//
//if (this.equals(pathStart)) return 0;
//
// δ13 = pathStart.distanceTo(this, R) / R;
// θ13 = pathStart.initialBearingTo(this)* toRadians;
// θ12 = pathStart.initialBearingTo(pathEnd)* toRadians;
//
// δxt = math.Asin(math.Sin(δ13) * math.Sin(θ13 - θ12));
//
//return δxt * R;
//}
//
//
///**
// * Returns how far ‘this’ point is along a path from from start-point, heading towards end-point.
// * That is, if a perpendicular is drawn from ‘this’ point to the (great circle) path, the
// * along-track distance is the distance from the start point to where the perpendicular crosses
// * the path.
// *
// * @param {LatLon} pathStart - Start point of great circle path.
// * @param {LatLon} pathEnd - End point of great circle path.
// * @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
// * @returns {number} Distance along great circle to point nearest ‘this’ point.
// *
// * @example
// * const pCurrent = new LatLon(53.2611, -0.7972);
// * const p1 = new LatLon(53.3206, -1.7297);
// * const p2 = new LatLon(53.1887, 0.1334);
// * const d = pCurrent.alongTrackDistanceTo(p1, p2); // 62.331 km
// */
//alongTrackDistanceTo(pathStart, pathEnd, radius=6371e3) {
//if (!(pathStart instanceof LatLon)) pathStart = LatLon.parse(pathStart); // allow literal forms
//if (!(pathEnd instanceof LatLon)) pathEnd = LatLon.parse(pathEnd); // allow literal forms
// R = radius;
//
//if (this.equals(pathStart)) return 0;
//
// δ13 = pathStart.distanceTo(this, R) / R;
// θ13 = pathStart.initialBearingTo(this)* toRadians;
// θ12 = pathStart.initialBearingTo(pathEnd)* toRadians;
//
// δxt = math.Asin(math.Sin(δ13) * math.Sin(θ13-θ12));
//
// δat = math.Acos(math.Cos(δ13) / Math.abs(math.Cos(δxt)));
//
//return δat*Math.sign(math.Cos(θ12-θ13)) * R;
//}
//
//
///**
// * Returns maximum latitude reached when travelling on a great circle on given bearing from
// * ‘this’ point (‘Clairaut’s formula’). Negate the result for the minimum latitude (in the
// * southern hemisphere).
// *
// * The maximum latitude is independent of longitude; it will be the same for all points on a
// * given latitude.
// *
// * @param {number} bearing - Initial bearing.
// * @returns {number} Maximum latitude reached.
// */
//maxLatitude(bearing) {
// θ = Number(bearing)* toRadians;
//
// φ = ll.Lat* toRadians;
//
// φMax = math.Acos(Math.abs(math.Sin(θ) * math.Cos(φ)));
//
//return φMax* toDegrees;
//}
//
//
///**
// * Returns the pair of meridians at which a great circle defined by two points crosses the given
// * latitude. If the great circle doesn't reach the given latitude, null is returned.
// *
// * @param {LatLon} point1 - First point defining great circle.
// * @param {LatLon} point2 - Second point defining great circle.
// * @param {number} latitude - Latitude crossings are to be determined for.
// * @returns {Object|null} Object containing { lon1, lon2 } or null if given latitude not reached.
// */
//static crossingParallels(point1, point2, latitude) {
//if (point1.equals(point2)) return null; // coincident points
//
// φ = Number(latitude)* toRadians;
//
// φ1 = point1.lat* toRadians;
// λ1 = point1.lon* toRadians;
// φ2 = point2.lat* toRadians;
// λ2 = point2.lon* toRadians;
//
// Δλ = λ2 - λ1;
//
// x = math.Sin(φ1) * math.Cos(φ2) * math.Cos(φ) * math.Sin(Δλ);
// y = math.Sin(φ1) * math.Cos(φ2) * math.Cos(φ) * math.Cos(Δλ) - math.Cos(φ1) * math.Sin(φ2) * math.Cos(φ);
// z = math.Cos(φ1) * math.Cos(φ2) * math.Sin(φ) * math.Sin(Δλ);
//
//if (z * z > x * x + y * y) return null; // great circle doesn't reach latitude
//
// λm = math.Atan2(-y, x); // longitude at max latitude
// Δλi = math.Acos(z / math.Sqrt(x*x + y*y)); // Δλ from λm to intersection points
//
// λi1 = λ1 + λm - Δλi;
// λi2 = λ1 + λm + Δλi;
//
// lon1 = λi1* toDegrees;
// lon2 = λi2* toDegrees;
//
//return {
//lon1: Dms.wrap180(lon1),
//lon2: Dms.wrap180(lon2),
//};
//}
///* Rhumb - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
//
//
///**
// * Returns the distance travelling from ‘this’ point to destination point along a rhumb line.
// *
// * @param {LatLon} point - Latitude/longitude of destination point.
// * @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
// * @returns {number} Distance in km between this point and destination point (same units as radius).
// *
// * @example
// * const p1 = new LatLon(51.127, 1.338);
// * const p2 = new LatLon(50.964, 1.853);
// * const d = p1.distanceTo(p2); // 40.31 km
// */
//rhumbDistanceTo(point, radius=6371e3) {
//if (!(point instanceof LatLon)) point = LatLon.parse(point); // allow literal forms
//
//// see www.edwilliams.org/avform.htm#Rhumb
//
// R = radius;
// φ1 = ll.Lat* toRadians;
// φ2 = point.lat* toRadians;
// Δφ = φ2 - φ1;
//let Δλ = Math.abs(point.lon - ll.Lon)* toRadians;
//// if dLon over 180° take shorter rhumb line across the anti-meridian:
//if (Math.abs(Δλ) > π) Δλ = Δλ > 0 ? -(2 * π - Δλ) : (2 * π + Δλ);
//
//// on Mercator projection, longitude distances shrink by latitude; q is the 'stretch factor'
//// q becomes ill-conditioned along E-W line (0/0); use empirical tolerance to avoid it
// Δψ = Math.log(math.Tan(φ2 / 2 + π / 4) / math.Tan(φ1 / 2 + π / 4));
// q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : math.Cos(φ1);
//
//// distance is pythagoras on 'stretched' Mercator projection, √(Δφ² + q²·Δλ²)
// δ = math.Sqrt(Δφ*Δφ + q*q * Δλ*Δλ); // angular distance in radians
// d = δ * R;
//
//return d;
//}
//
//
///**
// * Returns the bearing from ‘this’ point to destination point along a rhumb line.
// *
// * @param {LatLon} point - Latitude/longitude of destination point.
// * @returns {number} Bearing in degrees from north.
// *
// * @example
// * const p1 = new LatLon(51.127, 1.338);
// * const p2 = new LatLon(50.964, 1.853);
// * const d = p1.rhumbBearingTo(p2); // 116.7°
// */
//rhumbBearingTo(point) {
//if (!(point instanceof LatLon)) point = LatLon.parse(point); // allow literal forms
//if (this.equals(point)) return NaN; // coincident points
//
// φ1 = ll.Lat* toRadians;
// φ2 = point.lat* toRadians;
//let Δλ = (point.lon - ll.Lon)* toRadians;
//// if dLon over 180° take shorter rhumb line across the anti-meridian:
//if (Math.abs(Δλ) > π) Δλ = Δλ > 0 ? -(2 * π - Δλ) : (2 * π + Δλ);
//
// Δψ = Math.log(math.Tan(φ2 / 2 + π / 4) / math.Tan(φ1 / 2 + π / 4));
//
// θ = math.Atan2(Δλ, Δψ);
//
// bearing = θ* toDegrees;
//
//return Dms.wrap360(bearing);
//}
//
//
///**
// * Returns the destination point having travelled along a rhumb line from ‘this’ point the given
// * distance on the given bearing.
// *
// * @param {number} distance - Distance travelled, in same units as earth radius (default: metres).
// * @param {number} bearing - Bearing in degrees from north.
// * @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
// * @returns {LatLon} Destination point.
// *
// * @example
// * const p1 = new LatLon(51.127, 1.338);
// * const p2 = p1.rhumbDestinationPoint(40300, 116.7); // 50.9642°N, 001.8530°E
// */
//rhumbDestinationPoint(distance, bearing, radius=6371e3) {
// φ1 = ll.Lat* toRadians, λ1 = ll.Lon* toRadians;
// θ = Number(bearing)* toRadians;
//
// δ = distance / radius; // angular distance in radians
//
// Δφ = δ * math.Cos(θ);
//let φ2 = φ1 + Δφ;
//
//// check for some daft bugger going past the pole, normalise latitude if so
//if (Math.abs(φ2) > π / 2) φ2 = φ2 > 0 ? π - φ2 : -π - φ2;
//
// Δψ = Math.log(math.Tan(φ2 / 2 + π / 4) / math.Tan(φ1 / 2 + π / 4));
// q = Math.abs(Δψ) > 10e-12 ? Δφ / Δψ : math.Cos(φ1); // E-W course becomes ill-conditioned with 0/0
//
// Δλ = δ * math.Sin(θ) / q;
// λ2 = λ1 + Δλ;
//
// lat = φ2* toDegrees;
// lon = λ2* toDegrees;
//
//return new LatLon(lat, lon);
//}
//
//
///**
// * Returns the loxodromic midpoint (along a rhumb line) between ‘this’ point and second point.
// *
// * @param {LatLon} point - Latitude/longitude of second point.
// * @returns {LatLon} Midpoint between this point and second point.
// *
// * @example
// * const p1 = new LatLon(51.127, 1.338);
// * const p2 = new LatLon(50.964, 1.853);
// * const pMid = p1.rhumbMidpointTo(p2); // 51.0455°N, 001.5957°E
// */
//rhumbMidpointTo(point) {
//if (!(point instanceof LatLon)) point = LatLon.parse(point); // allow literal forms
//
//// see mathforum.org/kb/message.jspa?messageID=148837
//
// φ1 = ll.Lat* toRadians; let λ1 = ll.Lon* toRadians;
// φ2 = point.lat* toRadians, λ2 = point.lon* toRadians;
//
//if (Math.abs(λ2 - λ1) > π) λ1 += 2 * π; // crossing anti-meridian
//
// φ3 = (φ1 + φ2) / 2;
// f1 = math.Tan(π / 4 + φ1 / 2);
// f2 = math.Tan(π / 4 + φ2 / 2);
// f3 = math.Tan(π / 4 + φ3 / 2);
//let λ3 = ((λ2 - λ1) * Math.log(f3) + λ1 * Math.log(f2) - λ2 * Math.log(f1)) / Math.log(f2 / f1);
//
//if (!isFinite(λ3)) λ3 = (λ1 + λ2) / 2; // parallel of latitude
//
// lat = φ3* toDegrees;
// lon = λ3* toDegrees;
//
//return new LatLon(lat, lon);
//}
/* Area - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Calculates the area of a spherical polygon where the sides of the polygon are great circle
* arcs joining the vertices.
*
* @param {LatLon[]} polygon - Array of points defining vertices of the polygon.
* @param {number} [radius=6371e3] - (Mean) radius of earth (defaults to radius in metres).
* @returns {number} The area of the polygon in the same units as radius.
*
* @example
* const polygon = [new LatLon(0,0), new LatLon(1,0), new LatLon(0,1)];
* const area = LatLon.areaOf(polygon); // 6.18e9 m²
*/
func AreaOf(polygon []LatLon) float64 {
// uses method due to Karney: osgeo-org.1560.x6.nabble.com/Area-of-a-spherical-polygon-td3841625.html;
// for each edge of the polygon, tan(E/2) = tan(Δλ/2)·(tan(φ₁/2)+tan(φ₂/2)) / (1+tan(φ₁/2)·tan(φ₂/2))
// where E is the spherical excess of the trapezium obtained by extending the edge to the equator
// (Karney's method is probably more efficient than the more widely known L’Huilier’s Theorem)
const R = earthRadius
// close polygon so that last point equals first point
closed := polygon[0] == polygon[len(polygon)-1]
if !closed {
polygon = append(polygon, polygon[0])
}
nVertices := len(polygon) - 1
var S float64 // spherical excess in steradians
for v := 0; v < nVertices; v++ {
φ1 := polygon[v].Lat * toRadians
φ2 := polygon[v+1].Lat * toRadians
Δλ := (polygon[v+1].Lon - polygon[v].Lon) * toRadians
E := 2 * math.Atan2(math.Tan(Δλ/2)*(math.Tan(φ1/2)+math.Tan(φ2/2)), 1+math.Tan(φ1/2)*math.Tan(φ2/2))
S += E
}
if isPoleEnclosedBy(polygon) {
S = math.Abs(S) - 2*π
}
A := math.Abs(S * R * R) // area in units of R
if !closed {
polygon = polygon[:len(polygon)-1]
}
return A
}
// returns whether polygon encloses pole: sum of course deltas around pole is 0° rather than
// normal ±360°: blog.element84.com/determining-if-a-spherical-polygon-contains-a-pole.html
func isPoleEnclosedBy(p []LatLon) bool {
// TODO: any better test than this?
ΣΔ := 0.0
prevBrng := p[0].InitialBearingTo(p[1])
for v := 0; v < len(p)-1; v++ {
initBrng := p[v].InitialBearingTo(p[v+1])
finalBrng := p[v].FinalBearingTo(p[v+1])
ΣΔ += math.Mod(initBrng-prevBrng+540, 360) - 180
ΣΔ += math.Mod(finalBrng-initBrng+540,360) - 180
prevBrng = finalBrng
}
initBrng := p[0].InitialBearingTo(p[1])
ΣΔ += float64(int(initBrng-prevBrng+540)%360 - 180)
// TODO: fix (intermittant) edge crossing pole - eg (85,90), (85,0), (85,-90)
enclosed := math.Abs(ΣΔ) < 90 // 0°-ish
return enclosed
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Returns a string representation of ‘this’ point, formatted as degrees, degrees+minutes, or
* degrees+minutes+seconds.
*
* @param {string} [format=d] - Format point as 'd', 'dm', 'dms', or 'n' for signed numeric.
* @param {number} [dp=4|2|0] - Number of decimal places to use: default 4 for d, 2 for dm, 0 for dms.
* @returns {string} Comma-separated formatted latitude/longitude.
* @throws {RangeError} Invalid format.
*
* @example
* const greenwich = new LatLon(51.47788, -0.00147);
* const d = greenwich.toString(); // 51.4779°N, 000.0015°W
* const dms = greenwich.toString('dms', 2); // 51°28′40.37″N, 000°00′05.29″W
* const [lat, lon] = greenwich.toString('n').split(','); // 51.4779, -0.0015
*/
func (ll LatLon)String() string {
return fmt.Sprintf("%f,%f", ll.Lat, ll.Lon)
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */