This repository has been archived by the owner on Jun 1, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathREADME.win32
1030 lines (740 loc) · 41.2 KB
/
README.win32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
If you read this file _as_is_, just ignore the funny characters you
see. It is written in the POD format (see pod/perlpod.pod) which is
specially designed to be readable as is.
=head1 NAME
perlwin32 - Perl under Windows
=head1 SYNOPSIS
These are instructions for building Perl under Windows 2000 and later.
=head1 DESCRIPTION
Before you start, you should glance through the README file
found in the top-level directory to which the Perl distribution
was extracted. Make sure you read and understand the terms under
which this software is being distributed.
Also make sure you read L</BUGS AND CAVEATS> below for the
known limitations of this port.
The INSTALL file in the perl top-level has much information that is
only relevant to people building Perl on Unix-like systems. In
particular, you can safely ignore any information that talks about
"Configure".
You may also want to look at one other option for building a perl that
will work on Windows: the README.cygwin file, which give a different
set of rules to build a perl for Windows. This method will probably
enable you to build a more Unix-compatible perl, but you will also
need to download and use various other build-time and run-time support
software described in that file.
This set of instructions is meant to describe a so-called "native"
port of Perl to the Windows platform. This includes both 32-bit and
64-bit Windows operating systems. The resulting Perl requires no
additional software to run (other than what came with your operating
system). Currently, this port is capable of using one of the
following compilers on the Intel x86 architecture:
Microsoft Visual C++ version 6.0 or later
Intel C++ Compiler (experimental)
Gcc by mingw.org gcc version 3.4.5 or later
with runtime < 3.21
Gcc by mingw-w64.org gcc version 4.4.3 or later
Note that the last two of these are actually competing projects both
delivering complete gcc toolchain for MS Windows:
=over 4
=item L<http://mingw.org>
Delivers gcc toolchain targeting 32-bit Windows platform.
=item L<http://mingw-w64.org>
Delivers gcc toolchain targeting both 64-bit Windows and 32-bit Windows
platforms (despite the project name "mingw-w64" they are not only 64-bit
oriented). They deliver the native gcc compilers and cross-compilers
that are also supported by perl's makefile.
=back
The Microsoft Visual C++ compilers are also now being given away free. They are
available as "Visual C++ Toolkit 2003" or "Visual C++ 2005-2019 Express [or
Community, from 2017] Edition" (and also as part of the ".NET Framework SDK")
and are the same compilers that ship with "Visual C++ .NET 2003 Professional"
or "Visual C++ 2005-2019 Professional" respectively.
This port can also be built on IA64/AMD64 using:
Microsoft Platform SDK Nov 2001 (64-bit compiler and tools)
MinGW64 compiler (gcc version 4.4.3 or later)
The Windows SDK can be downloaded from L<http://www.microsoft.com/>.
The MinGW64 compiler is available at L<http://mingw-w64.org>.
The latter is actually a cross-compiler targeting Win64. There's also a trimmed
down compiler (no java, or gfortran) suitable for building perl available at:
L<http://strawberryperl.com/package/kmx/64_gcctoolchain/>
The recommended way is to install strawberry perl (32 or 64bit), and use
F<c:\strawberry\c> as the mingw root CCHOME.
NOTE: If you're using a 32-bit compiler to build perl on a 64-bit Windows
operating system, then you should set the WIN64 environment variable to "undef".
Also, the trimmed down compiler only passes tests when USE_ITHREADS *= define
(as opposed to undef) and when the CFG *= Debug line is commented out.
This port fully supports MakeMaker (the set of modules that
is used to build extensions to perl). Therefore, you should be
able to build and install most extensions found in the CPAN sites.
See L</Usage Hints for Perl on Windows> below for general hints about this.
=head2 Setting Up Perl on Windows
=over 4
=item Make
You need a "make" program to build the sources. If you are using
Visual C++ or the Windows SDK tools, you can use nmake supplied with Visual C++
or Windows SDK. You may also use, for Visual C++ or Windows SDK, dmake or gmake
instead of nmake. dmake is open source software, but is not included with
Visual C++ or Windows SDK. Builds using gcc need dmake or gmake. nmake is not
supported for gcc builds. Parallel building is only supported with dmake and
gmake, not nmake. When using dmake it is recommended to use dmake 4.13 or newer
for parallel building. Older dmakes, in parallel mode, have very high CPU usage
and pound the disk/filing system with duplicate I/O calls in an aggressive
polling loop.
A port of dmake for Windows is available from:
L<http://search.cpan.org/dist/dmake/>
Fetch and install dmake somewhere on your path.
=item Command Shell
Use the default "cmd" shell that comes with Windows. Some versions of the
popular 4DOS/NT shell have incompatibilities that may cause you trouble.
If the build fails under that shell, try building again with the cmd
shell.
Make sure the path to the build directory does not contain spaces. The
build usually works in this circumstance, but some tests will fail.
=item Microsoft Visual C++
The nmake that comes with Visual C++ will suffice for building. Visual C
requires that certain things be set up in the console before Visual C will
sucessfully run. To make a console box be able to run the C compiler, you will
need to beforehand, run the C<vcvars32.bat> file to compile for x86-32 and for
x86-64 C<vcvarsall.bat x64> or C<vcvarsamd64.bat>. On a typical install of a
Microsoft C compiler product, these batch files will already be in your C<PATH>
environment variable so you may just type them without an absolute path into
your console. If you need to find the absolute path to the batch file, it is
usually found somewhere like C:\Program Files\Microsoft Visual Studio\VC98\Bin.
With some newer Micrsoft C products (released after ~2004), the installer will
put a shortcut in the start menu to launch a new console window with the
console already set up for your target architecture (x86-32 or x86-64 or IA64).
With the newer compilers, you may also use the older batch files if you choose
so.
=item Microsoft Visual C++ 2008-2019 Express/Community Edition
These free versions of Visual C++ 2008-2019 Professional contain the same
compilers and linkers that ship with the full versions, and also contain
everything necessary to build Perl, rather than requiring a separate download
of the Windows SDK like previous versions did.
These packages can be downloaded by searching in the Download Center at
L<http://www.microsoft.com/downloads/search.aspx?displaylang=en>. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Install Visual C++ 2008-2019 Express/Community, then setup your environment
using, e.g.
C:\Program Files\Microsoft Visual Studio 12.0\Common7\Tools\vsvars32.bat
(assuming the default installation location was chosen).
Perl should now build using the win32/Makefile. You will need to edit that
file to set CCTYPE to one of MSVC90-MSVC142 first.
=item Microsoft Visual C++ 2005 Express Edition
This free version of Visual C++ 2005 Professional contains the same compiler
and linker that ship with the full version, but doesn't contain everything
necessary to build Perl.
You will also need to download the "Windows SDK" (the "Core SDK" and "MDAC
SDK" components are required) for more header files and libraries.
These packages can both be downloaded by searching in the Download Center at
L<http://www.microsoft.com/downloads/search.aspx?displaylang=en>. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Try to obtain the latest version of the Windows SDK. Sometimes these packages
contain a particular Windows OS version in their name, but actually work on
other OS versions too. For example, the "Windows Server 2003 R2 Platform SDK"
also runs on Windows XP SP2 and Windows 2000.
Install Visual C++ 2005 first, then the Platform SDK. Setup your environment
as follows (assuming default installation locations were chosen):
SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK
SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;C:\Program Files\Microsoft Visual Studio 8\VC\BIN;C:\Program Files\Microsoft Visual Studio 8\Common7\Tools;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin;C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;C:\Program Files\Microsoft Visual Studio 8\VC\VCPackages;%PlatformSDKDir%\Bin
SET INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE;%PlatformSDKDir%\include
SET LIB=C:\Program Files\Microsoft Visual Studio 8\VC\LIB;C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\lib;%PlatformSDKDir%\lib
SET LIBPATH=C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727
(The PlatformSDKDir might need to be set differently depending on which version
you are using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
while the latest versions install into version-specific locations such as
"C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2".)
Perl should now build using the win32/Makefile. You will need to edit that
file to set
CCTYPE = MSVC80
and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.
=item Microsoft Visual C++ Toolkit 2003
This free toolkit contains the same compiler and linker that ship with
Visual C++ .NET 2003 Professional, but doesn't contain everything
necessary to build Perl.
You will also need to download the "Platform SDK" (the "Core SDK" and "MDAC
SDK" components are required) for header files, libraries and rc.exe, and
".NET Framework SDK" for more libraries and nmake.exe. Note that the latter
(which also includes the free compiler and linker) requires the ".NET
Framework Redistributable" to be installed first. This can be downloaded and
installed separately, but is included in the "Visual C++ Toolkit 2003" anyway.
These packages can all be downloaded by searching in the Download Center at
L<http://www.microsoft.com/downloads/search.aspx?displaylang=en>. (Providing exact
links to these packages has proven a pointless task because the links keep on
changing so often.)
Try to obtain the latest version of the Windows SDK. Sometimes these packages
contain a particular Windows OS version in their name, but actually work on
other OS versions too. For example, the "Windows Server 2003 R2 Platform SDK"
also runs on Windows XP SP2 and Windows 2000.
Install the Toolkit first, then the Platform SDK, then the .NET Framework SDK.
Setup your environment as follows (assuming default installation locations
were chosen):
SET PlatformSDKDir=C:\Program Files\Microsoft Platform SDK
SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program Files\Microsoft Visual C++ Toolkit 2003\bin;%PlatformSDKDir%\Bin;C:\Program Files\Microsoft.NET\SDK\v1.1\Bin
SET INCLUDE=C:\Program Files\Microsoft Visual C++ Toolkit 2003\include;%PlatformSDKDir%\include;C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\include
SET LIB=C:\Program Files\Microsoft Visual C++ Toolkit 2003\lib;%PlatformSDKDir%\lib;C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\lib
(The PlatformSDKDir might need to be set differently depending on which version
you are using. Earlier versions installed into "C:\Program Files\Microsoft SDK",
while the latest versions install into version-specific locations such as
"C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2".)
Several required files will still be missing:
=over 4
=item *
cvtres.exe is required by link.exe when using a .res file. It is actually
installed by the .NET Framework SDK, but into a location such as the
following:
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322
Copy it from there to %PlatformSDKDir%\Bin
=item *
lib.exe is normally used to build libraries, but link.exe with the /lib
option also works, so change win32/config.vc to use it instead:
Change the line reading:
ar='lib'
to:
ar='link /lib'
It may also be useful to create a batch file called lib.bat in
C:\Program Files\Microsoft Visual C++ Toolkit 2003\bin containing:
@echo off
link /lib %*
for the benefit of any naughty C extension modules that you might want to build
later which explicitly reference "lib" rather than taking their value from
$Config{ar}.
=item *
setargv.obj is required to build perlglob.exe (and perl.exe if the USE_SETARGV
option is enabled). The Platform SDK supplies this object file in source form
in %PlatformSDKDir%\src\crt. Copy setargv.c, cruntime.h and
internal.h from there to some temporary location and build setargv.obj using
cl.exe /c /I. /D_CRTBLD setargv.c
Then copy setargv.obj to %PlatformSDKDir%\lib
Alternatively, if you don't need perlglob.exe and don't need to enable the
USE_SETARGV option then you can safely just remove all mention of $(GLOBEXE)
from win32/Makefile and setargv.obj won't be required anyway.
=back
Perl should now build using the win32/Makefile. You will need to edit that
file to set
CCTYPE = MSVC70FREE
and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.
=item Microsoft Platform SDK 64-bit Compiler
The nmake that comes with the Platform SDK will suffice for building
Perl. Make sure you are building within one of the "Build Environment"
shells available after you install the Platform SDK from the Start Menu.
=item GCC
Perl can be compiled with gcc from MinGW (version 3.4.5 or later) or from
MinGW64 (version 4.4.3 or later). It can be downloaded here:
L<http://www.mingw.org/>
L<http://www.mingw-w64.org/>
You also need dmake or gmake. See L</"Make"> above on how to get it.
=item MinGW from strawberry perl
Strawberry perl comes with a full mingw-w64 enviroment, ready to build
cperl on 32bit or 64bit Windows.
L<http://strawberryperl.com/>
Check that your path does not to include any cygwin or mingw paths,
that the strawberry paths are included (esp. c:\strawberry\c\bin) and
just use C<gmake -C win32>.
Note that the MinGW build currently requires a MinGW runtime version earlier
than 3.21 (check __MINGW32_MAJOR_VERSION and __MINGW32_MINOR_VERSION).
Note also that the C++ mode build currently fails with MinGW 3.4.5 and 4.7.2
or later, and with MinGW64 64-bit 6.3.0 or later.
=item Intel C++ Compiler
Experimental support for using Intel C++ Compiler has been added. Edit
F<win32/Makefile> and pick the correct C<CCTYPE> for the Visual C that Intel C was
installed into. Also uncomment C<__ICC> to enable Intel C on Visual C support.
To set up the build environment, from the Start Menu run
IA-32 Visual Studio 20__ mode or Intel 64 Visual Studio 20__ mode as
appropriate. Then run F<nmake> as usually in that prompt box.
Only Intel C++ Compiler v12.1 has been tested. Other versions probably will
work. Using Intel C++ Compiler instead of Visual C has the benefit of C99
compatibility which is needed by some CPAN XS modules, while maintaining
compatibility with Visual C object code and Visual C debugging infrastructure
unlike GCC.
=back
=head2 Building
=over 4
=item *
Make sure you are in the "win32" subdirectory under the perl toplevel.
This directory contains a "Makefile" that will work with versions of
nmake that come with Visual C++ or the Windows SDK, and a gmake
"GNUmakefile" for mingw, and a dmake "makefile.mk" that will work for
all supported compilers. The defaults in the gmake and dmake makefile
are setup to build using MinGW/gcc.
The default in the GNUmakefile are set to build using the strawberry
perl mingw toolchain, i.e. F<CCHOME=c:\strawberry\c>.
=item *
Edit the F<makefile.mk> (or F<GNUmakefile> or F<Makefile>) and change
the values of INST_DRV and INST_TOP. You can also enable various
build flags. These are explained in the makefiles.
You can also override the INST_TOP and INST_DRV setting on the command-line.
e.g. C<nmake INST_TOP=\cperl INST_DRV=d:>
Note that it is generally not a good idea to try to build a perl with
INST_DRV and INST_TOP set to a path that already exists from a previous
build. In particular, this may cause problems with the
F<lib/ExtUtils/t/Embed.t> test, which attempts to build a test program and
may end up building against the installed perl's lib/CORE directory rather
than the one being tested.
You will have to make sure that CCTYPE is set correctly and that
CCHOME points to wherever you installed your compiler. For GCC this
should be the directory that contains the F<bin>, F<include> and
F<lib> directories.
If building with the cross-compiler provided by
mingw-w64.org you'll need to uncomment the line that sets
GCCCROSS in the makefile.mk. Do this only if it's the cross-compiler - ie
only if the bin folder doesn't contain a gcc.exe. (The cross-compiler
does not provide a gcc.exe, g++.exe, ar.exe, etc. Instead, all of these
executables are prefixed with 'x86_64-w64-mingw32-'.)
The default value for CCHOME in the makefiles for Visual C++
may not be correct for some versions. Make sure the default exists
and is valid.
You may also need to comment out the C<DELAYLOAD = ...> line in the
Makefile if you're using VC++ 6.0 without the latest service pack and
the linker reports an internal error.
If you want build some core extensions statically into perl's dll, specify
them in the STATIC_EXT macro.
NOTE: The USE_64_BIT_INT build option is not supported with the 32-bit
Visual C++ 6.0 compiler.
Be sure to read the instructions near the top of the makefiles carefully.
=item *
For the L<ffi> ensure you have the F<ffi.h> headers and libffi library
somewhere where the compiler can find it.
Prebuilt binary packages are at
L<https://github.com/perl11/cperl/releases/download/libffi-win/libffi-3.2.2dev-mingw{32,64}.tar.gz>
and can be extracted into F<win32/>.
E.g. with mingw 32bit:
wget https://github.com/perl11/cperl/releases/download/libffi-win/libffi-3.2.2dev-mingw32.tar.gz
gzip -d libffi-3.2.2dev-mingw32.tar.gz
tar -xf libffi-3.2.2dev-mingw32.tar -C win32/
gmake -C win32 USE_FFI=define
with mingw 64bit:
wget https://github.com/perl11/cperl/releases/download/libffi-win/libffi-3.2.2dev-mingw64.tar.gz
gzip -d libffi-3.2.2dev-mingw64.tar.gz
tar -xf libffi-3.2.2dev-mingw64.tar -C win32/
gmake -C win32 USE_FFI=define
=item *
Type "gmake" or "dmake" or "nmake" if you are using that make.
This should build everything. Specifically, it will create cperl.exe,
cperl530.dll at the perl toplevel, and various other extension dll's
under the lib\auto directory. If the build fails for any reason, make
sure you have done the previous steps correctly.
To try dmake's parallel mode, type "dmake -P2", where 2, is the maximum number
of parallel jobs you want to run. A number of things in the build process will
run in parallel, but there are serialization points where you will see just 1
CPU maxed out. This is normal.
Similarly you can build in parallel with GNU make, type "gmake -j2" to
build with two parallel jobs, or higher for more.
If you are advanced enough with building C code, here is a suggestion to speed
up building perl, and the later C<make test>. Try to keep your PATH environmental
variable with the least number of folders possible (remember to keep your C
compiler's folders there). C<C:\WINDOWS\system32> or C<C:\WINNT\system32>
depending on your OS version should be first folder in PATH, since "cmd.exe"
is the most commonly launched program during the build and later testing.
=back
=head2 Testing Perl on Windows
Type "gmake test", (or "dmake test" or "nmake test"). This will run
most of the tests from the testsuite (many tests will be skipped).
There should be no test failures.
If you build with Visual C++ 2013 then three tests currently may fail with
Daylight Saving Time related problems: F<t/io/fs.t>,
F<cpan/HTTP-Tiny/t/110_mirror.t> and F<lib/File/Copy.t>. The failures are
caused by bugs in the CRT in VC++ 2013 which are fixed in VC++2015 and
later, as explained by Microsoft here:
L<https://connect.microsoft.com/VisualStudio/feedback/details/811534/utime-sometimes-fails-to-set-the-correct-file-times-in-visual-c-2013>. In the meantime,
if you need fixed C<stat> and C<utime> functions then have a look at the
CPAN distribution Win32::UTCFileTime.
If you build with Visual C++ 2015 or later then F<ext/XS-APItest/t/locale.t>
may crash (after all its tests have passed). This is due to a regression in the
Universal CRT introduced in the Windows 10 April 2018 Update, and will be fixed
in the May 2019 Update, as explained here: L<https://developercommunity.visualstudio.com/content/problem/519486/setlocalelc-numeric-iso-latin-16-fails-then-succee.html>.
If you build with certain versions (e.g. 4.8.1) of gcc from www.mingw.org then
F<ext/POSIX/t/time.t> may fail test 17 due to a known bug in those gcc builds:
see L<http://sourceforge.net/p/mingw/bugs/2152/>.
Some test failures may occur if you use a command shell other than the
native "cmd.exe", or if you are building from a path that contains
spaces. So don't do that.
If you are running the tests from a emacs shell window, you may see
failures in op/stat.t. Run "dmake test-notty" in that case.
Furthermore, you should make sure that during C<make test> you do not
have any GNU tool packages in your path: some toolkits like Unixutils
include some tools (C<type> for instance) which override the Windows
ones and makes tests fail. Remove them from your path while testing to
avoid these errors.
To see the output of specific failing tests run the harness from the t
directory:
# assuming you're starting from the win32 directory
cd ..\win32
.\perl harness <list of tests>
Please report any other failures as described under L</BUGS AND CAVEATS>.
=head2 Installation of Perl on Windows
Type "gmake install" (or "dmake install" or "nmake install"). This
will put the newly built perl and the libraries under whatever
C<INST_TOP> points to in the Makefile. It will also install the pod
documentation under C<$INST_TOP\$INST_VER\lib\pod> and HTML versions
of the same under C<$INST_TOP\$INST_VER\lib\pod\html>.
To use the Perl you just installed you will need to add a new entry to
your PATH environment variable: C<$INST_TOP\bin>, e.g.
set PATH=c:\cperl\bin;%PATH%
If you opted to uncomment C<INST_VER> and C<INST_ARCH> in the makefile
then the installation structure is a little more complicated and you will
need to add two new PATH components instead: C<$INST_TOP\$INST_VER\bin> and
C<$INST_TOP\$INST_VER\bin\$ARCHNAME>, e.g.
set PATH=c:\perl\5.6.0\bin;c:\perl\5.6.0\bin\MSWin32-x86;%PATH%
=head2 Usage Hints for Perl on Windows
=over 4
=item Environment Variables
The installation paths that you set during the build get compiled
into perl, so you don't have to do anything additional to start
using that perl (except add its location to your PATH variable).
If you put extensions in unusual places, you can set PERL5LIB
to a list of paths separated by semicolons where you want perl
to look for libraries. Look for descriptions of other environment
variables you can set in L<perlrun>.
You can also control the shell that perl uses to run system() and
backtick commands via PERL5SHELL. See L<perlrun>.
Perl does not depend on the registry, but it can look up certain default
values if you choose to put them there unless disabled at build time with
USE_NO_REGISTRY. On Perl process start Perl checks if
C<HKEY_CURRENT_USER\Software\Perl> and C<HKEY_LOCAL_MACHINE\Software\Perl>
exist. If the keys exists, they will be checked for remainder of the Perl
process's run life for certain entries. Entries in
C<HKEY_CURRENT_USER\Software\Perl> override entries in
C<HKEY_LOCAL_MACHINE\Software\Perl>. One or more of the following entries
(of type REG_SZ or REG_EXPAND_SZ) may be set in the keys:
lib-$] version-specific standard library path to add to @INC
lib standard library path to add to @INC
sitelib-$] version-specific site library path to add to @INC
sitelib site library path to add to @INC
vendorlib-$] version-specific vendor library path to add to @INC
vendorlib vendor library path to add to @INC
PERL* fallback for all %ENV lookups that begin with "PERL"
Note the C<$]> in the above is not literal. Substitute whatever version
of perl you want to honor that entry, e.g. C<5.6.0>. Paths must be
separated with semicolons, as usual on Windows.
=item File Globbing
By default, perl handles file globbing using the File::Glob extension,
which provides portable globbing.
If you want perl to use globbing that emulates the quirks of DOS
filename conventions, you might want to consider using File::DosGlob
to override the internal glob() implementation. See L<File::DosGlob> for
details.
=item Using perl from the command line
If you are accustomed to using perl from various command-line
shells found in UNIX environments, you will be less than pleased
with what Windows offers by way of a command shell.
The crucial thing to understand about the Windows environment is that
the command line you type in is processed twice before Perl sees it.
First, your command shell (usually CMD.EXE) preprocesses the command
line, to handle redirection, environment variable expansion, and
location of the executable to run. Then, the perl executable splits
the remaining command line into individual arguments, using the
C runtime library upon which Perl was built.
It is particularly important to note that neither the shell nor the C
runtime do any wildcard expansions of command-line arguments (so
wildcards need not be quoted). Also, the quoting behaviours of the
shell and the C runtime are rudimentary at best (and may, if you are
using a non-standard shell, be inconsistent). The only (useful) quote
character is the double quote ("). It can be used to protect spaces
and other special characters in arguments.
The Windows documentation describes the shell parsing rules here:
L<http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/cmd.mspx?mfr=true>
and the C runtime parsing rules here:
L<http://msdn.microsoft.com/en-us/library/17w5ykft%28v=VS.100%29.aspx>.
Here are some further observations based on experiments: The C runtime
breaks arguments at spaces and passes them to programs in argc/argv.
Double quotes can be used to prevent arguments with spaces in them from
being split up. You can put a double quote in an argument by escaping
it with a backslash and enclosing the whole argument within double quotes.
The backslash and the pair of double quotes surrounding the argument will
be stripped by the C runtime.
The file redirection characters "E<lt>", "E<gt>", and "|" can be quoted by
double quotes (although there are suggestions that this may not always
be true). Single quotes are not treated as quotes by the shell or
the C runtime, they don't get stripped by the shell (just to make
this type of quoting completely useless). The caret "^" has also
been observed to behave as a quoting character, but this appears
to be a shell feature, and the caret is not stripped from the command
line, so Perl still sees it (and the C runtime phase does not treat
the caret as a quote character).
Here are some examples of usage of the "cmd" shell:
This prints two doublequotes:
perl -e "print '\"\"' "
This does the same:
perl -e "print \"\\\"\\\"\" "
This prints "bar" and writes "foo" to the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" > blurch
This prints "foo" ("bar" disappears into nowhereland):
perl -e "print 'foo'; print STDERR 'bar'" 2> nul
This prints "bar" and writes "foo" into the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" 1> blurch
This pipes "foo" to the "less" pager and prints "bar" on the console:
perl -e "print 'foo'; print STDERR 'bar'" | less
This pipes "foo\nbar\n" to the less pager:
perl -le "print 'foo'; print STDERR 'bar'" 2>&1 | less
This pipes "foo" to the pager and writes "bar" in the file "blurch":
perl -e "print 'foo'; print STDERR 'bar'" 2> blurch | less
Discovering the usefulness of the "command.com" shell on Windows 9x
is left as an exercise to the reader :)
One particularly pernicious problem with the 4NT command shell for
Windows is that it (nearly) always treats a % character as indicating
that environment variable expansion is needed. Under this shell, it is
therefore important to always double any % characters which you want
Perl to see (for example, for hash variables), even when they are
quoted.
=item Building Extensions
The Comprehensive Perl Archive Network (CPAN) offers a wealth
of extensions, some of which require a C compiler to build.
Look in L<http://www.cpan.org/> for more information on CPAN.
Note that not all of the extensions available from CPAN may work
in the Windows environment; you should check the information at
L<http://www.cpantesters.org/> before investing too much effort into
porting modules that don't readily build.
Most extensions (whether they require a C compiler or not) can
be built, tested and installed with the standard mantra:
perl Makefile.PL
$MAKE
$MAKE test
$MAKE install
where $MAKE is whatever 'make' program you have configured perl to
use. Use "perl -V:make" to find out what this is. Some extensions
may not provide a testsuite (so "$MAKE test" may not do anything or
fail), but most serious ones do.
It is important that you use a supported 'make' program, and
ensure Config.pm knows about it. If you don't have nmake, you can
either get dmake from the location mentioned earlier or get an
old version of nmake reportedly available from:
L<http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/nmake15.exe>
Another option is to use the make written in Perl, available from
CPAN.
L<http://www.cpan.org/modules/by-module/Make/>
You may also use dmake or gmake. See L</"Make"> above on how to get it.
Note that MakeMaker actually emits makefiles with different syntax
depending on what 'make' it thinks you are using. Therefore, it is
important that one of the following values appears in Config.pm:
make='nmake' # MakeMaker emits nmake syntax
make='dmake' # MakeMaker emits dmake syntax
any other value # MakeMaker emits generic make syntax
(e.g GNU make, or Perl make)
If the value doesn't match the 'make' program you want to use,
edit Config.pm to fix it.
If a module implements XSUBs, you will need one of the supported
C compilers. You must make sure you have set up the environment for
the compiler for command-line compilation before running C<perl Makefile.PL>
or any invocation of make.
If a module does not build for some reason, look carefully for
why it failed, and report problems to the module author. If
it looks like the extension building support is at fault, report
that with full details of how the build failed using the perlbug
utility.
=item Command-line Wildcard Expansion
The default command shells on DOS descendant operating systems (such
as they are) usually do not expand wildcard arguments supplied to
programs. They consider it the application's job to handle that.
This is commonly achieved by linking the application (in our case,
perl) with startup code that the C runtime libraries usually provide.
However, doing that results in incompatible perl versions (since the
behavior of the argv expansion code differs depending on the
compiler, and it is even buggy on some compilers). Besides, it may
be a source of frustration if you use such a perl binary with an
alternate shell that *does* expand wildcards.
Instead, the following solution works rather well. The nice things
about it are 1) you can start using it right away; 2) it is more
powerful, because it will do the right thing with a pattern like
*/*/*.c; 3) you can decide whether you do/don't want to use it; and
4) you can extend the method to add any customizations (or even
entirely different kinds of wildcard expansion).
C:\> copy con c:\perl\lib\Wild.pm
# Wild.pm - emulate shell @ARGV expansion on shells that don't
use File::DosGlob;
@ARGV = map {
my @g = File::DosGlob::glob($_) if /[*?]/;
@g ? @g : $_;
} @ARGV;
1;
^Z
C:\> set PERL5OPT=-MWild
C:\> perl -le "for (@ARGV) { print }" */*/perl*.c
p4view/perl/perl.c
p4view/perl/perlio.c
p4view/perl/perly.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
perl5.005/win32/perlglob.c
perl5.005/win32/perllib.c
Note there are two distinct steps there: 1) You'll have to create
Wild.pm and put it in your perl lib directory. 2) You'll need to
set the PERL5OPT environment variable. If you want argv expansion
to be the default, just set PERL5OPT in your default startup
environment.
If you are using the Visual C compiler, you can get the C runtime's
command line wildcard expansion built into perl binary. The resulting
binary will always expand unquoted command lines, which may not be
what you want if you use a shell that does that for you. The expansion
done is also somewhat less powerful than the approach suggested above.
=item Notes on 64-bit Windows
Windows .NET Server supports the LLP64 data model on the Intel Itanium
architecture.
The LLP64 data model is different from the LP64 data model that is the
norm on 64-bit Unix platforms. In the former, C<int> and C<long> are
both 32-bit data types, while pointers are 64 bits wide. In addition,
there is a separate 64-bit wide integral type, C<__int64>. In contrast,
the LP64 data model that is pervasive on Unix platforms provides C<int>
as the 32-bit type, while both the C<long> type and pointers are of
64-bit precision. Note that both models provide for 64-bits of
addressability.
64-bit Windows running on Itanium is capable of running 32-bit x86
binaries transparently. This means that you could use a 32-bit build
of Perl on a 64-bit system. Given this, why would one want to build
a 64-bit build of Perl? Here are some reasons why you would bother:
=over
=item *
A 64-bit native application will run much more efficiently on
Itanium hardware.
=item *
There is no 2GB limit on process size.
=item *
Perl automatically provides large file support when built under
64-bit Windows.
=item *
Embedding Perl inside a 64-bit application.
=back
=back
=head2 Running Perl Scripts
Perl scripts on UNIX use the "#!" (a.k.a "shebang") line to
indicate to the OS that it should execute the file using perl.
Windows has no comparable means to indicate arbitrary files are
executables.
Instead, all available methods to execute plain text files on
Windows rely on the file "extension". There are three methods
to use this to execute perl scripts:
=over 8
=item 1
There is a facility called "file extension associations". This can be
manipulated via the two commands "assoc" and "ftype" that come
standard with Windows. Type "ftype /?" for a complete example of how
to set this up for perl scripts (Say what? You thought Windows
wasn't perl-ready? :).
=item 2
Since file associations don't work everywhere, and there are
reportedly bugs with file associations where it does work, the
old method of wrapping the perl script to make it look like a
regular batch file to the OS, may be used. The install process
makes available the "pl2bat.bat" script which can be used to wrap
perl scripts into batch files. For example:
pl2bat foo.pl
will create the file "FOO.BAT". Note "pl2bat" strips any
.pl suffix and adds a .bat suffix to the generated file.
If you use the 4DOS/NT or similar command shell, note that
"pl2bat" uses the "%*" variable in the generated batch file to
refer to all the command line arguments, so you may need to make
sure that construct works in batch files. As of this writing,
4DOS/NT users will need a "ParameterChar = *" statement in their
4NT.INI file or will need to execute "setdos /p*" in the 4DOS/NT
startup file to enable this to work.
=item 3
Using "pl2bat" has a few problems: the file name gets changed,
so scripts that rely on C<$0> to find what they must do may not
run properly; running "pl2bat" replicates the contents of the
original script, and so this process can be maintenance intensive
if the originals get updated often. A different approach that
avoids both problems is possible.
A script called "runperl.bat" is available that can be copied
to any filename (along with the .bat suffix). For example,
if you call it "foo.bat", it will run the file "foo" when it is
executed. Since you can run batch files on Windows platforms simply
by typing the name (without the extension), this effectively
runs the file "foo", when you type either "foo" or "foo.bat".
With this method, "foo.bat" can even be in a different location
than the file "foo", as long as "foo" is available somewhere on
the PATH. If your scripts are on a filesystem that allows symbolic
links, you can even avoid copying "runperl.bat".
Here's a diversion: copy "runperl.bat" to "runperl", and type
"runperl". Explain the observed behavior, or lack thereof. :)
Hint: .gnidnats llits er'uoy fi ,"lrepnur" eteled :tniH
=back
=head2 Miscellaneous Things
A full set of HTML documentation is installed, so you should be
able to use it if you have a web browser installed on your
system.
C<perldoc> is also a useful tool for browsing information contained
in the documentation, especially in conjunction with a pager
like C<less> (recent versions of which have Windows support). You may
have to set the PAGER environment variable to use a specific pager.
"perldoc -f foo" will print information about the perl operator
"foo".
One common mistake when using this port with a GUI library like C<Tk>
is assuming that Perl's normal behavior of opening a command-line
window will go away. This isn't the case. If you want to start a copy
of C<perl> without opening a command-line window, use the C<wperl>
executable built during the installation process. Usage is exactly
the same as normal C<perl> on Windows, except that options like C<-h>
don't work (since they need a command-line window to print to).
If you find bugs in perl, you can run C<perlbug> to create a
bug report (you may have to send it manually if C<perlbug> cannot
find a mailer on your system).
=head1 BUGS AND CAVEATS
Norton AntiVirus interferes with the build process, particularly if
set to "AutoProtect, All Files, when Opened". Unlike large applications
the perl build process opens and modifies a lot of files. Having the
the AntiVirus scan each and every one slows build the process significantly.
Worse, with PERLIO=stdio the build process fails with peculiar messages
as the virus checker interacts badly with miniperl.exe writing configure
files (it seems to either catch file part written and treat it as suspicious,
or virus checker may have it "locked" in a way which inhibits miniperl
updating it). The build does complete with
set PERLIO=perlio
but that may be just luck. Other AntiVirus software may have similar issues.
A git GUI shell extension for Windows such as TortoiseGit will cause the build
and later C<make test> to run much slower since every file is checked for its
git status as soon as it is created and/or modified. TortoiseGit doesn't cause
any test failures or build problems unlike the antivirus software described
above, but it does cause similar slowness. It is suggested to use Task Manager
to look for background processes which use high CPU amounts during the building
process.
Some of the built-in functions do not act exactly as documented in
L<perlfunc>, and a few are not implemented at all. To avoid
surprises, particularly if you have had prior exposure to Perl
in other operating environments or if you intend to write code
that will be portable to other environments, see L<perlport>
for a reasonably definitive list of these differences.
Not all extensions available from CPAN may build or work properly
in the Windows environment. See L</"Building Extensions">.
Most C<socket()> related calls are supported, but they may not
behave as on Unix platforms. See L<perlport> for the full list.
Signal handling may not behave as on Unix platforms (where it
doesn't exactly "behave", either :). For instance, calling C<die()>
or C<exit()> from signal handlers will cause an exception, since most
implementations of C<signal()> on Windows are severely crippled.
Thus, signals may work only for simple things like setting a flag
variable in the handler. Using signals under this port should
currently be considered unsupported.
Please send detailed descriptions of any problems and solutions that
you may find to E<lt>F<perlbug@perl.org>E<gt>, along with the output
produced by C<perl -V>.
=head1 ACKNOWLEDGEMENTS
The use of a camel with the topic of Perl is a trademark
of O'Reilly and Associates, Inc. Used with permission.
=head1 AUTHORS
=over 4
=item Gary Ng E<lt>71564.1743@CompuServe.COME<gt>
=item Gurusamy Sarathy E<lt>gsar@activestate.comE<gt>
=item Nick Ing-Simmons E<lt>nick@ing-simmons.netE<gt>
=item Jan Dubois E<lt>jand@activestate.comE<gt>
=item Steve Hay E<lt>steve.m.hay@googlemail.comE<gt>
=item Reini Urban E<lt>rurban@cpan.orgE<gt>