-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
94 lines (89 loc) · 4.31 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import datetime as datetime
# Perform cluster sampling on our dataframe.
# num_clusters is the number of clusters that should be sampled.
# sample_hierarchy is the group_by sequence to reach a cluster.
def sample(df, num_clusters, sample_hierarchy):
sample_grouped = df.groupby(sample_hierarchy)
print("Before: " + str(len(sample_grouped.indices.keys())))
key_sample = random.sample(sample_grouped.indices.keys(), num_clusters)
sample = pd.DataFrame()
for key in key_sample:
data = sample_grouped.get_group(key).reset_index(drop=True)
sample = data if sample.size == 0 else sample.append(data, ignore_index=True)
print("After: " + str(len(sample.groupby(sample_hierarchy).indices.keys())))
return sample
def plot(df, gt_context, distinguish, axes, poly):
colors = plt.get_cmap("Set1")(np.linspace(0, 1, len(df[distinguish].unique())))
cmapping = {}
count = 0
for item in df[distinguish].unique():
if distinguish == "route":
cmapping[str(item)] = gt_context.route_colors[item]
else:
cmapping[str(item)] = colors[count]
count += 1
grouped = df.groupby(["route", "stop", "session", "approach"])
for item in grouped.groups.keys():
dkey = grouped.get_group(item)[distinguish].iloc[0]
scatter_x = grouped.get_group(item)[axes[0]].reset_index(drop=True)
scatter_y = grouped.get_group(item)[axes[1]].reset_index(drop=True)
plt.scatter(x=scatter_x, y=scatter_y, c=cmapping[str(dkey)], s=1)
corcoeff_mapping = {}
for dkey in df[distinguish].unique():
grouped = df.groupby([distinguish])
grouped.get_group(dkey).reset_index(drop=True)
scatter_x = grouped.get_group(dkey)[axes[0]].reset_index(drop=True)
scatter_y = grouped.get_group(dkey)[axes[1]].reset_index(drop=True)
corcoeff_mapping[str(dkey)] = float(np.corrcoef(scatter_x, scatter_y)[0,1])
if poly >= 0:
plt.plot(np.unique(scatter_x), np.poly1d(np.polyfit(scatter_x, scatter_y, poly))(np.unique(scatter_x)), c=cmapping[str(dkey)], linewidth=4)
plt.title("Correlator")
plt.xlabel(axes[0])
plt.ylabel(axes[1])
handler = []
for item in cmapping:
handler.append(mpatches.Patch(color=cmapping[str(item)], label=item + " (" + str(round(corcoeff_mapping[str(item)], 2)) + ")"))
plt.legend(handles=handler)
plt.show()
plt.close()
# Plot NextBus prediction vs time to show how this is a reliable metric for detecting
# arrivals, despite the fact that it is an indirect measure. Green dotted lines are validated arrivals.
def plot_validation(data):
session_group = data.groupby(["route", "stop", "session"])
key = random.choice(session_group.indices.keys())
frame = session_group.get_group(key)
plt.title("Segmented Approach " + str(key))
plt.plot(frame["timestamp"].astype(np.int64), frame["secondsToArrival"], linewidth=3)
#plt.plot(frame["timestamp"], frame["actualSecondsToArrival"], linewidth=3, c="y")
#plt.plot(frame["timestamp"], frame["distance"], linewidth=2, c="b")
plt.xlabel("Timestamp")
plt.ylabel("Seconds to Arrival")
plt.legend()
for index, row in frame.iterrows():
temp = frame["timestamp"].astype(np.int64)
if row["newApproach"]:
plt.axvline(x=temp[index], linewidth=2, c="r")
if row["validated"]:
plt.axvline(x=temp[index], linewidth=2, c="g",linestyle='--')
plt.show()
# Plot distance versus time to show why using distance is an unreliable metric for detecting
# arrivals, despite the fact that it is a direct measure. Green dotted lines are validated arrivals.
def plot_distance(data):
session_group = data.groupby(["route", "stop", "session"])
key = random.choice(session_group.indices.keys())
frame = session_group.get_group(key)
plt.title("Bus Distance From Stop " + str(key))
plt.plot(frame["timestamp"].astype(np.int64), frame["distance"], linewidth=3)
plt.xlabel("Timestamp")
plt.ylabel("Distance from Stop")
plt.legend()
for index, row in frame.iterrows():
temp = frame["timestamp"].astype(np.int64)
#if row["validated"]:
#plt.axvline(x=temp[index], linewidth=2, c="g",linestyle='--')
plt.show()