-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcolour_las_file.py
executable file
·286 lines (226 loc) · 9.92 KB
/
colour_las_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#Description: Attribute LAS file with RGB colour information
"""
Attribute points in a LAS file with RGB colour information. Point clouds can be
visualised in viewers which support colouring points by RGB values such as
http://plas.io/
Requires hyperspectral data to be mapped to the same projection as LAS files.
Latest version available from: https://github.com/pmlrsg/arsf_tools
Requires:
* laspy (https://github.com/grantbrown/laspy) - to read LAS files
* GDAL (http://www.gdal.org) - to read hyperspectral files
Known Issues:
Can use a lot of memory as loads three bands of an image to memory
and arrays for x,y,r,g,b from LAS file.
Author: Dan Clewley
Creation Date: 07/12/2015
"""
###########################################################
# This file has been created by ARSF Data Analysis Node and
# is licensed under the GPL v3 Licence. A copy of this
# licence is available to download with this file.
###########################################################
from __future__ import print_function
import argparse
import copy
import sys
import laspy
import numpy
from osgeo import gdal
from arsf_envi_reader import envi_header
#: Debug mode - prints out more information useful for debugging.
DEBUG = False
DEFAULT_WAVELENGTHS = [640, 540, 470]
def get_bands_from_wavelengths(input_image, wavelengths=DEFAULT_WAVELENGTHS):
"""
Get bands for a list of wavelengths (useful for creating three band
composites).
Function adapted from one in createimage.py
"""
input_header = envi_header.find_hdr_file(input_image)
if input_header is None:
raise Exception("Need to use ENVI header to get bands")
header_dict = envi_header.read_hdr_file(input_header)
image_wavelengths = header_dict['wavelength'].split(',')
out_bands = []
for wavelength in wavelengths:
band = min(range(len(image_wavelengths)),
key=lambda x:abs(float(image_wavelengths[x])-wavelength))
out_bands.append(band)
return out_bands
class ExtractPixels(object):
"""
Class to extract RGB values for a given pixel
"""
def __init__(self, input_image, red_band_num=None,
green_band_num=None, blue_band_num=None):
self.input_ds = gdal.Open(input_image, gdal.GA_ReadOnly)
if self.input_ds is None:
raise Exception("Could not open image {}".format(input_image))
geotransform = self.input_ds.GetGeoTransform()
self.image_tl_x = geotransform[0]
self.pixel_x_size = geotransform[1]
self.image_tl_y = geotransform[3]
self.pixel_y_size = geotransform[5]
imagebands = self.input_ds.RasterCount
# Check if image bands have been provided.
if red_band_num is None and green_band_num is None \
and blue_band_num is None:
# For a three band image assume 1,2,3
if imagebands == 3:
red_band_num = 1
green_band_num = 2
blue_band_num = 3
# For more than three bands try to get from wavelengths
else:
try:
bands = get_bands_from_wavelengths(input_image)
red_band_num = bands[0]
green_band_num = bands[1]
blue_band_num = bands[2]
except Exception as err:
raise Exception("Image has more than three bands and no "
"bands specified. Could not read from "
"header - please specify"
"\nError message {}".format(err))
if red_band_num > imagebands or \
green_band_num > imagebands or \
blue_band_num > imagebands:
raise Exception("Specified band is greater than number of bands in "
"image ({})".format(imagebands))
self.red_band = self.input_ds.GetRasterBand(red_band_num).ReadAsArray()
self.green_band = self.input_ds.GetRasterBand(green_band_num).ReadAsArray()
self.blue_band = self.input_ds.GetRasterBand(blue_band_num).ReadAsArray()
def __del__(self):
self.input_ds = None
def apply_standard_deviation_stretch(self, in_array):
"""
Apply a 2 standard deviation stretch to scale pixel values from
0 - 255
"""
mean = in_array.mean()
stdev = in_array.std()
sd_min = mean - 2*stdev
sd_max = mean + 2*stdev
sd_range = sd_max - sd_min
out_array = (in_array / sd_range) * 255
out_array[out_array < 0] = 0
out_array[out_array > 255] = 255
return out_array
def scale_bands(self):
"""
Scale image bands (required if not between 0 - 255)
"""
self.red_band = self.apply_standard_deviation_stretch(self.red_band)
self.green_band = self.apply_standard_deviation_stretch(self.green_band)
self.blue_band = self.apply_standard_deviation_stretch(self.blue_band)
def get_pixelvals(self, in_x, in_y):
"""
Get pixel values for a given x and y in geographic coordinates.
Uses the centre coordinate of each pixel.
"""
pixel_x = ((in_x - self.image_tl_x) / self.pixel_x_size) \
+ (self.pixel_x_size / 2.0)
pixel_y = ((in_y - self.image_tl_y) / self.pixel_y_size) \
+ (self.pixel_y_size / 2.0)
if pixel_x < 0 or pixel_y < 0:
pixel_vals = None
if DEBUG:
print("Position {} N, {} E is outside image.".format(in_y, in_x))
else:
try:
red_val = self.red_band[int(pixel_y), int(pixel_x)]
green_val = self.green_band[int(pixel_y), int(pixel_x)]
blue_val = self.blue_band[int(pixel_y), int(pixel_x)]
pixel_vals = [red_val, green_val, blue_val]
except IndexError:
pixel_vals = None
if DEBUG:
print("Position {} N, {} E is outside image.".format(in_y,
in_x))
return pixel_vals
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="""Attribute a LAS file with
colour information from a raster for visualisation in programs such as:
http://plas.io/. Bands can be specified via the command line and pixel values
stretched for display.
Created by ARSF-DAN at Plymouth Marine Laboratory.""")
parser.add_argument("inputlas", nargs=1,type=str, help="Input LAS file")
parser.add_argument("outputlas", nargs=1,type=str, help="Output LAS file")
parser.add_argument("--image", required=True,
help="Image to extract values from.")
parser.add_argument("--red", required=False,
type=int,
default=None,
help="Band in image to use for red channel")
parser.add_argument("--green", required=False,
type=int,
default=None,
help="Band in image to use for green channel")
parser.add_argument("--blue", required=False,
type=int,
default=None,
help="Band in image to use for blue channel")
parser.add_argument("--scale", required=False,
action="store_true",
default=False,
help="Scale pixel values (if not already 0 - 255)")
args=parser.parse_args()
print("Reading in data from {}".format(args.inputlas[0]))
input_file = laspy.file.File(args.inputlas[0], mode = "r")
# Increase point source ID to handle RGB fields
new_header = copy.copy(input_file.header)
new_header.data_format_id = 2
# Open output file
output_file = laspy.file.File(args.outputlas[0], mode = "w",
header=new_header,
vlrs = input_file.header.vlrs)
# Get scaled x and y values
point_x = input_file.get_x_scaled()
point_y = input_file.get_y_scaled()
out_red = numpy.zeros_like(point_x, dtype=numpy.uint8)
out_green = numpy.zeros_like(point_x, dtype=numpy.uint8)
out_blue = numpy.zeros_like(point_x, dtype=numpy.uint8)
# Set up pixel extraction class
pixelval = ExtractPixels(args.image,
red_band_num=args.red,
green_band_num=args.green,
blue_band_num=args.blue)
# Scale pixel values between 0 - 255 if needed.
if args.scale:
pixelval.scale_bands()
print("Getting RGB values:")
status = 0
status_percent = 0
status_inc = point_x.shape[0] / 10
colour_pixels = 0
for i in range(point_x.shape[0]):
pixel_vals = pixelval.get_pixelvals(point_x[i], point_y[i])
if pixel_vals is not None:
out_red[i] = pixel_vals[0]
out_green[i] = pixel_vals[1]
out_blue[i] = pixel_vals[2]
colour_pixels += 1
if i >= status and status_percent < 100:
print("{}...".format(status_percent), end="")
sys.stdout.flush()
status_percent += 10
status += status_inc
print("100 %")
print("Set colour for {}/{} points".format(colour_pixels, point_x.shape[0]))
pixelval = None
# Set output values
output_file.set_x(input_file.get_x())
output_file.set_y(input_file.get_y())
output_file.set_z(input_file.get_z())
output_file.set_intensity(input_file.get_intensity())
output_file.set_return_num(input_file.get_return_num())
output_file.set_num_returns(input_file.get_num_returns())
output_file.set_classification(input_file.get_classification())
output_file.set_red(out_red)
output_file.set_green(out_green)
output_file.set_blue(out_blue)
print("Writing out data to {}".format(args.outputlas[0]))
input_file.close()
output_file.close()