-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstartup.py
193 lines (159 loc) · 6.55 KB
/
startup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# import the necessary packages
import RPi.GPIO as GPIO
from imutils.video import VideoStream
from imutils.video import FPS
from mailjet_rest import client
import face_recognition
from datetime import datetime
import requests
import imutils
import pickle
import time
import cv2
import os
GPIO.setmode(GPIO.BOARD) # Consider complete raspberry-pi board
GPIO.setwarnings(False)
servoPin = 12
led_waiting = 11
led_success = 13
led_failure = 15
switch = 16
GPIO.setup(led_waiting, GPIO.OUT)
GPIO.setup(led_success, GPIO.OUT)
GPIO.setup(led_failure, GPIO.OUT)
GPIO.setup(servoPin, GPIO.OUT)
GPIO.setup(switch, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(led_waiting, GPIO.LOW)
GPIO.output(led_success, GPIO.LOW)
GPIO.output(led_failure, GPIO.LOW)
pwm_servo = GPIO.PWM(servoPin, 50)
pwm_servo.start(0)
def facial_rec():
#Initialize 'currentname' to trigger only when a new person is identified.
currentname = "unknown"
#Determine faces from encodings.pickle file model created from train_model.py
encodingsP = "training/encodings.pickle"
# load the known faces and embeddings along with OpenCV's Haar
# cascade for face detection
print("[INFO] loading encodings + face detector...")
data = pickle.loads(open(encodingsP, "rb").read())
# initialize the video stream and allow the camera sensor to warm up
# Set the ser to the followng
# src = 0 : for the build in single web cam, could be your laptop webcam
# src = 2 : I had to set it to 2 inorder to use the USB webcam attached to my laptop
#vs = VideoStream(src=2,framerate=10).start()
vs = cv2.VideoCapture(0)
time.sleep(2.0)
# start the FPS counter
fps = FPS().start()
start_time = time.time()
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream and resize it
# to 500px (to speedup processing)
ret, frame = vs.read()
frame = imutils.resize(frame, width=500)
# Detect the fce boxes
boxes = face_recognition.face_locations(frame)
# compute the facial embeddings for each face bounding box
encodings = face_recognition.face_encodings(frame, boxes)
names = []
# loop over the facial embeddings
for encoding in encodings:
# attempt to match each face in the input image to our known
# encodings
matches = face_recognition.compare_faces(data["encodings"],
encoding)
name = "unknown" #if face is not recognized, then print Unknown
cv2.imwrite("snapshot.jpg", frame)
# check to see if we have found a match
if True in matches:
# find the indexes of all matched faces then initialize a
# dictionary to count the total number of times each face
# was matched
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# determine the recognized face with the largest number
# of votes (note: in the event of an unlikely tie Python
# will select first entry in the dictionary)
name = max(counts, key=counts.get)
#If someone in your dataset is identified, print their name on the screen
if currentname != name:
currentname = name
return currentname
#print(currentname)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
# draw the predicted face name on the image - color is in BGR
cv2.rectangle(frame, (left, top), (right, bottom),
(0, 255, 225), 2)
y = top - 15 if top - 15 > 15 else top + 15
cv2.putText(frame, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
.8, (0, 255, 255), 2)
# display the image to our screen
cv2.imshow("Facial Recognition is Running", frame)
key = cv2.waitKey(1) & 0xFF
elapsed_time = time.time() - start_time
if elapsed_time > 10:
break
# quit when 'q' key is pressed
if key == ord("q"):
break
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
vs.release()
return currentname
def send_email():
tstamp = datetime.fromtimestamp(os.path.getctime("snapshot.jpg")).strftime('%Y-%m-%d %H:%M:%S')
return requests.post(
"https://api.mailgun.net/v3/sandbox79a5f057d83a4c21a7d44d6fecd3e891.mailgun.org/messages",
auth=("api", "4dc6d4f03aad66df6dac66eabf5398a5-bdb2c8b4-a4cf0826"),
files=[("attachment", ("snapshot.jpg", open("snapshot.jpg","rb").read()))],
data={"from": "Excited User <mailgun@sandbox79a5f057d83a4c21a7d44d6fecd3e891.mailgun.org>",
"to": "pradyutkumar01@gmail.com",
"subject": "Unrecognized Student Alert!!",
"text": "A student attempted to enter Lab at: "+ tstamp + " and failed. Find attached the image."})
while True:
if(GPIO.input(switch) == GPIO.HIGH): # When button is not clicked
continue
# Process Starts
GPIO.output(led_waiting, GPIO.HIGH)
person = facial_rec()
if person == "unknown":
GPIO.output(led_waiting, GPIO.LOW)
GPIO.output(led_failure, GPIO.HIGH)
send_email()
time.sleep(5.0)
GPIO.output(led_failure, GPIO.LOW)
else:
print(person)
GPIO.output(led_waiting, GPIO.LOW)
GPIO.output(led_success, GPIO.HIGH)
pwm_servo.ChangeDutyCycle(1)
time.sleep(0.3)
pwm_servo.ChangeDutyCycle(2)
time.sleep(0.3)
pwm_servo.ChangeDutyCycle(3)
time.sleep(0.3)
pwm_servo.ChangeDutyCycle(4)
time.sleep(0.3)
pwm_servo.ChangeDutyCycle(5)
time.sleep(0.3)
pwm_servo.ChangeDutyCycle(6)
time.sleep(5.0)
pwm_servo.ChangeDutyCycle(0)
GPIO.output(led_success, GPIO.LOW)
continue