-
Notifications
You must be signed in to change notification settings - Fork 231
/
Copy pathdist_run.py
632 lines (526 loc) · 22 KB
/
dist_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Example run command:
# torchrun --nproc-per-node 4 dist_run.py llama2-7b-chat --pp 2
# torchrun --nproc-per-node 4 dist_run.py llama3 --pp 2
import argparse
import os
from enum import auto, Enum
from pathlib import Path
from types import SimpleNamespace
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.distributed as dist
from torch.distributed.pipelining import PipelineStage, ScheduleGPipe
from torchchat.cli.builder import _initialize_tokenizer, TokenizerArgs
# TODO - these are not distributed specific, consider moving to new package
from torchchat.distributed.checkpoint_utils import (
get_hf_config_file,
load_weights_from_hf_format,
load_weights_from_torchchat_format,
)
from torchchat.distributed.logging_utils import SingletonLogger
from torchchat.distributed.utils import (
bytes_to_readable,
Color as color,
CUDATrackTime,
get_module_size,
get_num_params,
GPUMemoryMonitor,
)
from torchchat.model import ModelArgs, Transformer, TransformerArgs
from torchchat.utils.build_utils import set_precision
try:
from tokenizer.tiktoken import Tokenizer as TiktokenTokenizer
except ImportError:
TiktokenTokenizer = None
try:
from sentencepiece import SentencePieceProcessor
except ImportError:
SentencePieceProcessor = None
logger = SingletonLogger.get_logger()
_tokenizer_type = None # global variable to store the tokenizer type
# Using model name to identify the model to load, for example "llama2-7b-chat".
# You can change it to other values listed below.
# For details on the name-to-distribution mapping, see README.md or models.json.
# Name : HF distribution name, dtype, and model dimension
NAME_TO_DISTRIBUTION_AND_DTYPE = {
"llama2-7b-chat": ("meta-llama/Llama-2-7b-chat-hf", torch.float16, 4096),
"llama3": ("meta-llama/Meta-Llama-3-8B-Instruct", torch.bfloat16, 4096),
"llama3-70b": ("meta-llama/Meta-Llama-3-70B-Instruct", torch.bfloat16, 8192),
}
class TokenizerType(Enum):
Tiktoken = auto()
SentencePiece = auto()
def _init_distributed():
dist.init_process_group("nccl")
rank = dist.get_rank()
world_size = dist.get_world_size()
# Assuming same number of GPUs per node
torch.cuda.set_device(rank % torch.cuda.device_count())
return rank, world_size
def _create_device_mesh(mesh_dimensions):
return dist.init_device_mesh("cuda", mesh_dimensions, mesh_dim_names=("pp", "tp"))
def dict_to_args(dictionary: Dict[str, Any]) -> SimpleNamespace:
return SimpleNamespace(**dictionary)
def _build_chat_tokenizer(
model_name: str,
model_base_name: Optional[str] = None,
) -> SentencePieceProcessor | TiktokenTokenizer:
"""Builds a tokenizer for the given model name, and sets the global tokenizer type variable"""
global _tokenizer_type
# Try to infer the model base name from the model name:
# e.g. "llama2-7b-chat" -> "llama2"
if model_base_name is None:
model_base_name = model_name.split("-")[0]
logger.info(
f"Using model base name '{model_base_name}' to build tokenizer. "
"If not found, please specify it using the `model_base_name` argument."
)
# Create base args for tokenizer
default_model_dir = Path(
os.getenv("TORCHCHAT_MODELDIR", "~/.torchchat/model-cache")
).expanduser()
tokenconfig = {
"model_directory": default_model_dir,
"model": model_base_name,
"tokenizer_path": None,
}
args = dict_to_args(tokenconfig)
tokenizer_args = TokenizerArgs.from_args(args)
tokenizer = _initialize_tokenizer(tokenizer_args)
assert tokenizer is not None, f"Failed to get tokenizer using {tokenconfig=}"
logger.info(
f"using tokenizer = {tokenizer.__class__.__module__}.{tokenizer.__class__.__name__}"
)
# set global variable _tokenizer_type
if isinstance(tokenizer, TiktokenTokenizer):
_tokenizer_type = TokenizerType.Tiktoken
elif isinstance(tokenizer, SentencePieceProcessor):
_tokenizer_type = TokenizerType.SentencePiece
else:
raise ValueError(f"Unknown tokenizer type: {tokenizer.__class__}")
logger.info(f"tokenizer type = {_tokenizer_type}")
return tokenizer
def _load_model_weights(
stage_module: torch.nn.Module,
distribution: str,
device: torch.device,
model_config: ModelArgs,
chpt_from: str,
):
"""Load the weights from the safetensor file(s) into the model stage.
Model config is needed b/c we permute wq and wk weights based on attn heads.
Args:
stage_module (torch.nn.Module): The model stage to load the weights into.
distribution (str): The distribution name, e.g. "meta-llama/Meta-Llama-3-8B-Instruct".
device (torch.device): The device to load the weights onto.
model_config (ModelArgs): The model config.
chpt_from (str): The checkpoint format to load the weights from, e.g. "torchchat" or "hf".
"""
if chpt_from == "hf":
# This format stands for: index file + multiple binary files
load_weights_from_hf_format(stage_module, distribution, device, model_config)
elif chpt_from == "torchchat":
# This format stands for:
# single binary file, OR
# multiple binary files without index files.
load_weights_from_torchchat_format(
stage_module, distribution, device, model_config
)
else:
raise ValueError(f"Unknown checkpoint format: {chpt_from}")
def _encode_strings(
strings: List[str],
tokenizer,
bos: bool,
device: torch.device,
dtype=torch.int64,
) -> List[torch.Tensor]:
"""Encode a list of prompt strings into a list of tensor token ids."""
encoded_list = []
for string in strings:
tokens = tokenizer.encode(string)
if bos:
tokens = [tokenizer.bos_id()] + tokens
encoded_list.append(torch.tensor(tokens, dtype=dtype, device=device))
return encoded_list
def _create_padded_prompts(
input_ids_list: List[torch.Tensor],
tokenizer,
seqlen: int,
start_pos: int,
device: torch.device,
pad_token_id: Optional[int] = None,
) -> Tuple[torch.Tensor, List[int]]:
"""
Create a padded tensor for multiple encoded input prompts.
Returns:
Tuple[torch.Tensor, List[int]]: A tuple containing the padded tensor and a list of prompt lengths.
"""
pad_token_id = pad_token_id if pad_token_id is not None else tokenizer.eos_id()
# Find the maximum prompt length
max_prompt_len = max(ids.size(0) for ids in input_ids_list)
# Calculate the buffer size
max_new_tokens = max(0, min(seqlen - start_pos, seqlen - max_prompt_len))
token_buffer_size = max_prompt_len + max_new_tokens
# Create the padded batch tensor
batch_size = len(input_ids_list)
batch_seq = torch.full(
(batch_size, token_buffer_size), pad_token_id, dtype=torch.int64, device=device
)
prompt_lengths = []
for i, input_ids in enumerate(input_ids_list):
prompt_len = input_ids.size(0)
batch_seq[i, :prompt_len] = input_ids
prompt_lengths.append(prompt_len)
return batch_seq, prompt_lengths
def _batch_decode_next_tokens(
output: torch.Tensor,
pos: List[int],
step: int = -1,
temperature: float = 1.0,
topk: int = 10,
) -> torch.Tensor:
"""
Decode the next token for each prompt in the batch. Adds temperature option for non-deterministic decoding.
Args:
output (torch.Tensor): The output tensor to decode.
pos (List[int]): The positions of the `output` to decode in the sequence length dimension.
step (int): Step indicator. If -1, use positions from `pos`. Otherwise, use the first token.
temperature (float): Sampling temperature for non-deterministic decoding.
Returns:
torch.Tensor: Decoded token ids.
"""
batch_size, seq_len, vocab_size = output.shape
if step != -1:
# `pos` is not provided, so we can use the first token
next_token_logits = output[:, 0, :]
else:
# get the logits for each prompt at the specified positions
next_token_logits = output[torch.arange(batch_size), torch.tensor(pos) - 1]
if temperature != 1.0:
next_token_logits = next_token_logits / temperature
# Uses top-k sampling if temperature is not 1.0, otherwise use argmax
if temperature != 1.0:
top_k = min(topk, vocab_size) # Ensure top-k is not greater than vocab size
top_k_logits, top_k_indices = torch.topk(next_token_logits, k=top_k, dim=-1)
probs = torch.softmax(top_k_logits, dim=-1)
next_token_indices = torch.multinomial(probs, num_samples=1).squeeze(-1)
next_tokens = top_k_indices.gather(
-1, next_token_indices.unsqueeze(-1)
).squeeze(-1)
else:
# Argmax (deterministic)
next_tokens = torch.argmax(next_token_logits, dim=-1, keepdim=True)
# Token ids in int tensor form
return next_tokens
def _update_padded_sequence(
padded_sequence: torch.Tensor,
new_token: torch.Tensor,
prompt_lengths: List[int],
) -> None:
for i in range(len(prompt_lengths)):
padded_sequence[i, prompt_lengths[i]] = new_token[i, 0]
# logger.info(f"updated prompt {i} with new token {new_token[i, 0]}")
# Decode token id into string and print it
def _decode_in_flight(token, tokenizer, tp_rank):
"""decode token ids for all prompts in the batch and log them"""
# `token` is a tensor of shape (batch_size, 1).
# For TiktokenTokenizer, we need to squeeze it to 1D.
# For SentencePieceProcessor, we don't.
if isinstance(tokenizer, TiktokenTokenizer):
token = torch.squeeze(token, dim=1)
token_str = tokenizer.decode(token.tolist())
# print the token string on tp rank 0
if tp_rank == 0:
logger.info(
f"{color.green} responses ====>>>> "
f"{color.blue} {token_str} {color.reset}"
)
def _cleanup():
dist.barrier()
dist.destroy_process_group()
prompt = [
"What is Snow?",
# "Can you explain what is the purpose of back propagation in neural networks?",
"Who is Santa Claus?",
"Where does Santa live?",
# "Who is Abraham Lincoln?",
# "How are models trained?",
]
def main(args):
model_name = args.model_name
pp_degree = args.pp
rank, world_size = _init_distributed()
gpu_memory_monitor = GPUMemoryMonitor("cuda")
logger.info(f"{color.yellow} {gpu_memory_monitor.get_device_info()}{color.reset}")
distribution, model_dtype, model_dimension = NAME_TO_DISTRIBUTION_AND_DTYPE[
model_name
]
logger.info(
f"Using model weights from {distribution}, dtype {model_dtype} and model dimension {model_dimension}"
)
# Model-level config
model_config = ModelArgs.from_name(distribution)
# Transformer-level config
config = TransformerArgs.from_params(model_config.transformer_args["text"])
logger.info(f"Transformer Config: {config}")
tokenizer = _build_chat_tokenizer(model_name)
set_precision(model_dtype)
logger.info(f"Using cache precision {model_dtype}")
hf_config = get_hf_config_file(distribution)
if hf_config is None:
raise ValueError(f"Config file not found for model id {distribution}")
# Validate pipeline degree
assert world_size % pp_degree == 0
assert config.n_layers % pp_degree == 0
# Tensor parallel is enabled in this program
tp_degree = world_size // pp_degree
logger.info(f"Using TP degree {tp_degree} and PP degree {pp_degree}")
# Create device mesh
mesh_dimensions = (pp_degree, tp_degree)
device_mesh = _create_device_mesh(mesh_dimensions)
tp_mesh = device_mesh["tp"]
pp_mesh = device_mesh["pp"]
logger.info(f"Created device mesh: {device_mesh}\n{tp_mesh=}, {pp_mesh=}")
tp_rank = tp_mesh.get_local_rank()
pp_rank = pp_mesh.get_local_rank()
tp_group = tp_mesh.get_group()
pp_group = pp_mesh.get_group()
logger.info(f"{pp_degree=}, {tp_degree=}")
# Convenience variables
first_pp_rank = 0
last_pp_rank = pp_degree - 1
# Assuming same number of GPUs per node
device = torch.device(f"cuda:{rank % torch.cuda.device_count()}")
# Fill in PP configs
config.stage_idx = pp_rank
config.n_stages = pp_degree
with torch.device("meta"):
# TODO: we should create model instead of Transformer
model = Transformer(config)
# Distribute model on TP mesh
# (Surprisingly, this works even though model is on meta device and mesh is of
# cuda devices)
model.distribute(tp_mesh)
if rank == 0:
logger.info(f"Model: {model}")
# Load weights
logger.info(f"Loading weights for {pp_rank=} on {device=}")
with CUDATrackTime() as timer:
_load_model_weights(model, distribution, device, config, args.chpt_from)
logger.info(
f"{color.green}Total weight loading time: {timer.get_time()} {timer.unit} for rank {rank}{color.reset}"
)
# Batch size. Since we push batches dynamically through the pipeline rather
# than chunking them, this is effectively micro-batch size in pipeline
# sense. Thus it is interchangeable with micro-batch size below.
batch_size = len(prompt)
seqlen_prefill = 1024 # sequence length
# Setup KV caches (after model distribution)
# The number of cache lanes is the same as the maximum number of
# micro-batches that can be "in flight" in parallel -- imagine each
# micro-batch takes 1 "pipeline lane," they need distinct KV cache spaces.
# When decoding is done for certain micro-batches, we can reuse the KV cache
# lanes.
# TODO: bump up the lane count
pipeline_lanes = 1
with device:
model.setup_caches(batch_size, seqlen_prefill, cache_lanes=pipeline_lanes)
# info on stage size and params
stage_size = get_module_size(model)
stage_size_formatted = bytes_to_readable(stage_size)
stage_num_params = get_num_params(model)
logger.info(
f"Stage {rank} has {color.blue}{stage_num_params} params{color.reset}, Size: {color.blue}{stage_size_formatted}{color.reset}"
)
# Setup input position (input_pos) for prefill: a list of increasing integers from 0 to seqlen
input_pos = torch.arange(seqlen_prefill, device=device)
model.eval()
# Helper function to get example inputs and outputs for the stages.
def get_example_ins_outs(seqlen: int) -> Tuple[torch.Tensor, torch.Tensor]:
mb_ids = torch.randint(
0, config.vocab_size, (batch_size, seqlen), device=device
)
activation = torch.rand(
batch_size, seqlen, model_dimension, device=device, dtype=model_dtype
)
logits = torch.rand(
batch_size, seqlen, config.vocab_size, device=device, dtype=model_dtype
)
example_inputs = (mb_ids if pp_rank == first_pp_rank else activation,)
example_outputs = (logits if pp_rank == last_pp_rank else activation,)
return example_inputs, example_outputs
# Create prefill stage
logger.info(f"Creating pipeline stage for prefill {pp_rank=}, {pp_degree=}")
example_inputs, example_outputs = get_example_ins_outs(seqlen_prefill)
prefill_stage = PipelineStage(
model,
pp_rank,
pp_degree,
device,
input_args=example_inputs,
output_args=example_outputs,
group=pp_group,
)
# Create schedule
# Number of micro-batches for the schedule is 1, because each step() call we
# only push 1 micro-batch into the pipeline. But we can continuously push
# new micro-batches into the pipeline as they arrive, achieving same
# pipelining effect.
prefiller = ScheduleGPipe(prefill_stage, 1)
start_pos = 0
# Need these global ids due to the API definition of dist.send and recv
first_pp_rank_global_id = dist.get_global_rank(pp_group, first_pp_rank)
last_pp_rank_global_id = dist.get_global_rank(pp_group, last_pp_rank)
# encode the prompt
input_ids = _encode_strings(
prompt, tokenizer, bos=True, device=device, dtype=torch.int64
)
# create a padded tensor for the input prompt
padded_sequence, prompt_lengths = _create_padded_prompts(
input_ids, tokenizer, seqlen_prefill, start_pos, device
)
# Need these global ids due to the API definition of dist.send and recv
first_pp_rank_global_id = dist.get_global_rank(pp_group, first_pp_rank)
last_pp_rank_global_id = dist.get_global_rank(pp_group, last_pp_rank)
# New token generated each iteration
# need a row dimension for each prompt in the batch
new_token = torch.zeros(batch_size, 1, device=device, dtype=torch.int64)
# Store the generated tokens
res = []
# Prefill phase
# Run context input through pipeline
# TODO: we need to pass `input_pos` and `cache_lane` to each stage.
lane = 0
kwargs = {"input_pos": input_pos, "cache_lane": lane}
with torch.no_grad(), CUDATrackTime() as timer:
if pp_rank == first_pp_rank:
output = prefiller.step(padded_sequence, **kwargs)
elif pp_rank == last_pp_rank:
output = prefiller.step(**kwargs)
else: # middle pp ranks
prefiller.step(**kwargs)
logger.info(
f"{color.green}Prefilling time: {timer.get_time()} {timer.unit} for rank {rank}{color.reset}"
)
# Decode the output -- first generated token
if pp_rank == last_pp_rank:
logger.info(f"{color.green}Decoding...{prompt_lengths=}{color.reset}")
new_token = _batch_decode_next_tokens(output, prompt_lengths)
res.append(new_token)
if not args.disable_in_flight_decode:
_decode_in_flight(new_token, tokenizer, tp_rank)
# seqlen = 1 now
seqlen_decode = 1
input_pos = torch.tensor([prompt_lengths[0]], device=device)
# Create decode stage
logger.info(f"Creating pipeline stage for decode {pp_rank=}, {pp_degree=}")
example_inputs, example_outputs = get_example_ins_outs(seqlen_decode)
decode_stage = PipelineStage(
model,
pp_rank,
pp_degree,
device,
input_args=example_inputs,
output_args=example_outputs,
group=pp_group,
)
# create schedule
decoder = ScheduleGPipe(decode_stage, 1)
# Decoding
with torch.no_grad(), CUDATrackTime() as timer:
for step in range(args.ntokens - 1):
kwargs = {"input_pos": input_pos, "cache_lane": lane}
# sendrecv between last and first ranks, only if:
# first_pp_rank != last_pp_rank.
if pp_rank == last_pp_rank and pp_rank != first_pp_rank:
dist.send(
new_token,
dst=first_pp_rank_global_id,
group=pp_group,
)
elif pp_rank == first_pp_rank and pp_rank != last_pp_rank:
dist.recv(
new_token,
src=last_pp_rank_global_id,
group=pp_group,
)
# Run data through pipeline
if pp_rank == first_pp_rank:
output = decoder.step(new_token, **kwargs)
elif pp_rank == last_pp_rank:
output = decoder.step(**kwargs)
else: # middle pp ranks
decoder.step(**kwargs)
# Decode the output
if pp_rank == last_pp_rank:
new_token = _batch_decode_next_tokens(output, prompt_lengths, step)
res.append(new_token)
if not args.disable_in_flight_decode:
_decode_in_flight(new_token, tokenizer, tp_rank)
# Increment input position
input_pos += 1
logger.info(
f"{color.green}Decoding time: {timer.get_time()} {timer.unit} for rank {rank}{color.reset}"
)
# Display the decoding results
# output formatted response via last pp group and tp rank 0
if pp_rank == last_pp_rank and tp_rank == 0:
# `res` is a list of tensors, each being a batch of generated token ids.
# We need to concatenate them to get the full sequence of generated
# token ids. Thus cat'ing along dim 1.
res = torch.cat(res, dim=1)
res_list = res.tolist()
if _tokenizer_type == TokenizerType.Tiktoken:
# For TiktokenTokenizer, we need to decode prompt by prompt.
# TODO: is there a better way to do this?
responses = [tokenizer.decode(sequence) for sequence in res_list]
elif _tokenizer_type == TokenizerType.SentencePiece: # SentencePieceProcessor
# For SentencePieceProcessor, we can decode the entire 2D list at once.
responses = tokenizer.decode(res_list)
else:
raise ValueError(f"Unknown tokenizer type {_tokenizer_type}")
# Show prompts and responses
for prompt_text, response_text in zip(prompt, responses):
logger.info(f"Prompt: {color.green}{prompt_text} {color.reset}")
logger.info(f"Response: {color.red}{response_text} {color.reset}")
# Cleanup
_cleanup()
logger.info(
f"{color.green}Success{color.white} - {color.blue}Rank {rank} has completed.{color.reset}"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"model_name",
type=str,
default="llama3",
help="Name of the model to load",
choices=NAME_TO_DISTRIBUTION_AND_DTYPE.keys(),
)
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel degree")
parser.add_argument(
"--ntokens",
type=int,
default=40,
help="Number of tokens to generate",
)
parser.add_argument(
"--disable-in-flight-decode",
action="store_true",
default=False,
help="Whether to decode token into string in flight",
)
parser.add_argument(
"--chpt-from",
type=str,
default="hf", # TODO: change to torchchat once we support it well
help="Checkpoint format to load from",
choices=["hf", "torchchat"],
)
args = parser.parse_args()
main(args)