-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcontroller.py
851 lines (702 loc) · 33.4 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
import json
import logging
import pickle
import time
import tkinter as tk
from typing import Tuple
import h5py
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.backend_bases import MouseEvent
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from qt3utils.applications.qt3scan.interface import (
QT3ScanDAQControllerInterface,
QT3ScanCounterDAQControllerInterface,
QT3ScanPositionControllerInterface,
QT3ScanSpectrometerDAQControllerInterface,
)
import qt3utils.datagenerators
from qt3utils.errors import convert_nidaq_daqnotfounderror, QT3Error
matplotlib.use('Agg')
module_logger = logging.getLogger(__name__)
module_logger.setLevel(logging.ERROR)
def weighted_mean_wavelength(wavelengths, spectra):
"""
Calculates the mean wavelength for each x, y coordinate weighted by the counts.
Args:
spectra: A 3D numpy array containing the spectra data, where the first two
dimensions represent the x and y coordinates and the third dimension
represents the wavelengths.
Returns:
A 2D numpy array containing the mean wavelength for each x, y coordinate.
"""
# Check if 3D array
if len(spectra.shape) != 3:
raise ValueError("Input data must be a 3D numpy array.")
# Get number of dimensions (x, y, wavelengths)
x_dim, y_dim, wavelength_dim = spectra.shape
# Initialize array for mean wavelengths
mean_wavelengths = np.zeros((x_dim, y_dim))
# Loop over each x,y coordinate
for x in range(x_dim):
for y in range(y_dim):
# Extract spectrum for current coordinate
spectrum = spectra[x, y, :]
# Calculate weighted mean using counts as weights
try:
mean_wavelengths[x, y] = np.average(wavelengths, weights=spectrum - np.min(spectrum))
except ZeroDivisionError:
# Avoids error if filtered range is off the available wavelength limits
# and there are no data to be processed
mean_wavelengths[x, y] = np.nan
return mean_wavelengths
# If we need to implement this for more than a single axis, we need to use the np.apply_over_axes method,
# and also make sure to take into account the number of axes and the number of count axes (though, it should be 1?)
# I guess if we have multidimensional axes (e.g. wavelength and number of frames), we need to aggregate that too.
STANDARD_COUNT_AGGREGATION_METHODS = {
'Counts-Sum': lambda _, data: np.sum(data, axis=-1),
'Counts-Mean': lambda _, data: np.mean(data, axis=-1),
'Counts-Max': lambda _, data: np.max(data, axis=-1),
'Counts-Min': lambda _, data: np.min(data, axis=-1),
'Axes-Weighted-Mean': lambda params, data: weighted_mean_wavelength(params, data),
'Axes-ArgMax': lambda params, data: params[np.argmax(data, axis=-1)],
'Axes-ArgMin': lambda params, data: params[np.argmin(data, axis=-1)],
}
class QT3ScanConfocalApplicationController:
"""
Implements qt3utils.applications.qt3scan.interface.QT3ScanApplicationControllerInterface
Note that the DAQ controller here must implement QT3ScanCounterDAQControllerInterface
"""
def __init__(self,
position_controller: QT3ScanPositionControllerInterface,
daq_controller: QT3ScanCounterDAQControllerInterface,
logger_level: int) -> None:
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logger_level)
self.daq_and_scanner = qt3utils.datagenerators.CounterAndScanner(daq_controller, position_controller)
self.data_clock_rate = None
self._raw_bg_counts = 0.
self.data_configs = {'DAQ': None, 'Scanner': None}
self.data_saved_once = False
@property
def step_size(self) -> float:
return self.daq_and_scanner.step_size
@step_size.setter
def step_size(self, value):
self.daq_and_scanner.step_size = value
@property
def raw_bg_counts(self) -> float:
return self._raw_bg_counts
@raw_bg_counts.setter
def raw_bg_counts(self, value: float):
self._raw_bg_counts = value
@property
def scanned_count_rate(self) -> np.ndarray:
data_clock_rate = self.data_clock_rate if self.data_clock_rate is not None else np.nan
return np.array(self.daq_and_scanner.scanned_count_rate) - self.raw_bg_counts * data_clock_rate
@property
def scanned_raw_counts(self) -> np.ndarray:
return np.array(self.daq_and_scanner.scanned_raw_counts) - self.raw_bg_counts
@property
def position_controller(self) -> QT3ScanPositionControllerInterface:
return self.daq_and_scanner.stage_controller
@property
def daq_controller(self) -> QT3ScanDAQControllerInterface:
return self.daq_and_scanner.rate_counter
@property
def xmin(self) -> float:
return self.daq_and_scanner.xmin
@property
def xmax(self) -> float:
return self.daq_and_scanner.xmax
@property
def ymin(self) -> float:
return self.daq_and_scanner.ymin
@property
def ymax(self) -> float:
return self.daq_and_scanner.ymax
@property
def current_y(self) -> float:
return self.daq_and_scanner.current_y
@convert_nidaq_daqnotfounderror(module_logger)
def start(self) -> None:
self.data_clock_rate = self.daq_controller.clock_rate
self.data_configs['DAQ'] = self.daq_controller.last_config_dict
self.data_configs['Scanner'] = self.position_controller.last_config_dict
self.daq_and_scanner.start()
@convert_nidaq_daqnotfounderror(module_logger)
def stop(self) -> None:
self.daq_and_scanner.stop()
@convert_nidaq_daqnotfounderror(module_logger)
def post_stop(self) -> None:
self.daq_and_scanner.post_stop()
@convert_nidaq_daqnotfounderror(module_logger)
def reset(self) -> None:
self.daq_and_scanner.reset()
self.data_clock_rate = None
self.data_configs = {'DAQ': None, 'Scanner': None}
self.data_saved_once = False
@convert_nidaq_daqnotfounderror(module_logger)
def set_to_starting_position(self) -> None:
self.daq_and_scanner.set_to_starting_position()
def still_scanning(self) -> bool:
return self.daq_and_scanner.still_scanning()
@convert_nidaq_daqnotfounderror(module_logger)
def scan_x(self) -> None:
self.daq_and_scanner.scan_x()
@convert_nidaq_daqnotfounderror(module_logger)
def move_y(self) -> None:
self.daq_and_scanner.move_y()
@convert_nidaq_daqnotfounderror(module_logger)
def optimize_position(
self, axis: str,
central: float,
range: float,
step_size: float
) -> Tuple[np.ndarray, np.ndarray, float, np.ndarray]:
"""
The returned tuple elements should be:
0th: np.ndarray of count rates across the axis
1st: np.ndarray of axix positions (same length as 0, example: 31.5, 32, 32.5, ... 38.5, 39 )
2nd: float of the position of the maximum count rate
3rd: np.ndarray of the fit coefficients (C, mu, sigma, offset) that describe the best-fit gaussian shape to the raw_data
"""
return self.daq_and_scanner.optimize_position(axis, central, range, step_size)
def set_scan_range(self, xmin: float, xmax: float, ymin: float, ymax: float) -> None:
self.daq_and_scanner.set_scan_range(xmin, xmax, ymin, ymax)
def get_completed_scan_range(self) -> Tuple[float, float, float, float]:
return self.daq_and_scanner.get_completed_scan_range()
@staticmethod
def allowed_file_save_formats() -> list:
"""
Returns a list of tuples of the allowed file save formats
[(description, file_extension), ...]
"""
formats = [('Compressed Numpy MultiArray', '*.npz'), ('Numpy Array (count rate only)', '*.npy'),
('HDF5', '*.h5')]
return formats
@staticmethod
def default_file_format() -> str:
"""
Returns the default file format
"""
return '.npz'
def save_scan(self, afile_name) -> None:
file_type = afile_name.split('.')[-1]
data = dict(
scan_range=self.get_completed_scan_range(),
raw_counts=self.daq_and_scanner.scanned_raw_counts,
count_rate=self.daq_and_scanner.scanned_count_rate,
step_size=self.daq_and_scanner.step_size,
daq_clock_rate=self.data_clock_rate,
bg_raw_counts=self.raw_bg_counts,
daq_config=self.data_configs['DAQ'],
scanner_config=self.data_configs['Scanner'],
)
if file_type == 'npy':
np.save(afile_name, data['count_rate'])
elif file_type == 'npz':
np.savez_compressed(afile_name, **data)
elif file_type == 'h5':
h5file = h5py.File(afile_name, 'w')
for key, value in data.items():
if key not in ['daq_config', 'scanner_config']:
h5file.create_dataset(key, data=value)
else:
h5file.attrs[key] = json.dumps(value)
h5file.close()
else:
return
self.data_saved_once = True
def load_scan(self, afile_name):
file_type = afile_name.split('.')[-1]
if file_type == 'npy':
logging.error('Filetype "npy" is not supported for loading scans.')
return
elif file_type == 'npz':
data_dict = dict(np.load(afile_name, allow_pickle=True))
for key, value in data_dict.items():
if len(value.shape) == 0:
data_dict[key] = value[()]
elif file_type == 'h5':
with h5py.File(afile_name, 'r') as h5file:
data_dict = {}
for key in h5file.keys():
try:
data_dict[key] = h5file[key][:]
except ValueError:
data_dict[key] = h5file[key][()]
for key, value in dict(h5file.attrs).items():
data_dict[key] = json.loads(value)
elif file_type == 'pkl':
with open(afile_name, 'rb') as f:
data_dict = pickle.load(f)
self.daq_and_scanner.scanned_raw_counts = data_dict.get('raw_counts', [])
self.daq_and_scanner.scanned_count_rate = data_dict.get('count_rate', [])
(self.daq_and_scanner.xmin, self.daq_and_scanner.xmax,
self.daq_and_scanner.ymin, self.daq_and_scanner.current_y) = \
data_dict.get('scan_range', (
self.position_controller.minimum_allowed_position,
self.position_controller.maximum_allowed_position,
self.position_controller.minimum_allowed_position,
self.position_controller.maximum_allowed_position)
)
self.daq_and_scanner.step_size = data_dict.get('step_size', 0.5)
self.daq_and_scanner.ymax = self.daq_and_scanner.current_y - self.daq_and_scanner.step_size
self.data_clock_rate = data_dict.get('daq_clock_rate', None)
self.raw_bg_counts = data_dict.get('bg_raw_counts', 0.)
self.data_configs['DAQ'] = data_dict.get('daq_config', None)
self.data_configs['Scanner'] = data_dict.get('scanner_config', None)
self.data_saved_once = False
def scan_image_rightclick_event(self, event: MouseEvent, index_x: int, index_y: int) -> None:
"""
This method is called when the user right clicks on the scan image.
"""
self.logger.debug(f"scan_image_rightclick_event. click at {event.xdata}, {event.ydata}")
class QT3ScanHyperSpectralApplicationController:
"""
Implements qt3utils.applications.qt3scan.interface.QT3ScanApplicationControllerInterface
For HyperSpectral imaging, the daq_controller object will be a spectrometer that
acquires a spectrum at each position in the scan.
Note that the DAQ controller here must implement QT3ScanSpectrometerDAQControllerInterface
"""
def __init__(
self,
position_controller: QT3ScanPositionControllerInterface,
daq_controller: QT3ScanSpectrometerDAQControllerInterface,
logger_level: int
) -> None:
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logger_level)
self._daq_controller = daq_controller
self._position_controller = position_controller
self.running = False
self._current_y = 0
self._ymin = self.position_controller.minimum_allowed_position
self._ymax = self.position_controller.maximum_allowed_position
self._xmin = self.position_controller.minimum_allowed_position
self._xmax = self.position_controller.maximum_allowed_position
self._step_size = 0.5
self.raster_line_pause = 0.150 # wait 150ms for the piezo stage to settle before a line scan
self._raw_bg_counts = 0.
self._filter_view_range = (-np.inf, np.inf)
self._counts_aggregation_option = list(STANDARD_COUNT_AGGREGATION_METHODS.keys())[0]
self.hyper_spectral_raw_data = None # is there way to create a "default numpy array", similar a 'default dict'?
self.hyper_spectral_wavelengths = None
self.data_clock_rate = None
self.data_configs = {'DAQ': None, 'Scanner': None}
self.data_saved_once = False
@property
def step_size(self) -> float:
return self._step_size
@step_size.setter
def step_size(self, value: float):
self._step_size = value
@property
def scanned_count_rate(self) -> np.ndarray:
if not self.counts_aggregation_option.startswith('Axes'):
data_clock_rate = self.data_clock_rate if self.data_clock_rate is not None else np.nan
return self.scanned_raw_counts * data_clock_rate
else:
return self.scanned_raw_counts
@property
def filter_view_range(self) -> Tuple[float, float]:
return self._filter_view_range
@filter_view_range.setter
def filter_view_range(self, value: Tuple[float, float]):
filter_min = value[0]
filter_max = value[1]
if filter_min > filter_max:
filter_min, filter_max = filter_max, filter_min
if self.hyper_spectral_wavelengths is not None:
error_occurred = False
min_allowed_filter_difference = 1.001 * np.max(np.diff(self.hyper_spectral_wavelengths))
filter_difference = filter_max - filter_min
if filter_difference < min_allowed_filter_difference:
self.logger.error(f"Filter range difference {filter_difference} is larger than "
f"the smallest allowed value {min_allowed_filter_difference}.")
error_occurred = True
wl_min = np.min(self.hyper_spectral_wavelengths)
wl_max = np.max(self.hyper_spectral_wavelengths)
if filter_max < wl_min:
self.logger.error(f"Filter maximum {filter_max} is smaller than "
f"the smallest available wavelength {wl_min}.")
error_occurred = True
if filter_min > wl_max:
self.logger.error(f"Filter minimum {filter_min} is larger than "
f"the largest available wavelength {wl_max}.")
error_occurred = True
if error_occurred:
self.logger.error(f'Filter will stay as {self.filter_view_range}.')
return
self._filter_view_range = filter_min, filter_max
self.logger.debug(f'Filter Range changed to {self.filter_view_range}.')
@property
def raw_bg_counts(self) -> float:
return self._raw_bg_counts
@raw_bg_counts.setter
def raw_bg_counts(self, value: float):
self._raw_bg_counts = value
@property
def counts_aggregation_option(self):
return self._counts_aggregation_option
@counts_aggregation_option.setter
def counts_aggregation_option(self, value: str):
valid_values = tuple(STANDARD_COUNT_AGGREGATION_METHODS.keys())
if value in valid_values:
self._counts_aggregation_option = value
self.logger.debug(f'Counts aggregation option changed to {value}.')
else:
self.logger.error(f'Counts aggregation option "{value}", not in list of valid values {valid_values}.')
@property
def counts_aggregation_method(self):
return STANDARD_COUNT_AGGREGATION_METHODS[self.counts_aggregation_option]
@property
def scanned_raw_counts(self) -> np.ndarray:
if self.hyper_spectral_raw_data is not None:
wl_min, wl_max = min(self.filter_view_range), max(self.filter_view_range)
wls = self.hyper_spectral_wavelengths
data_in_range = np.float64(self.hyper_spectral_raw_data[:, :, (wls >= wl_min) & (wls <= wl_max)])
data_in_range -= self.raw_bg_counts
wls_in_range = wls[(wls >= wl_min) & (wls <= wl_max)]
return self.counts_aggregation_method(wls_in_range, data_in_range)
else:
return np.array([])
@property
def position_controller(self) -> QT3ScanPositionControllerInterface:
return self._position_controller
@property
def daq_controller(self) -> QT3ScanDAQControllerInterface:
return self._daq_controller
@property
def xmin(self) -> float:
return self._xmin
@property
def xmax(self) -> float:
return self._xmax
@property
def ymin(self) -> float:
return self._ymin
@property
def ymax(self) -> float:
return self._ymax
@property
def current_y(self) -> float:
return self._current_y
def start(self) -> None:
"""
This method is used to start the scan over the scan range. It should prepare the hardware to
begin acquistion of data.
"""
self.running = True
self.data_clock_rate = self.daq_controller.clock_rate
self.data_configs['DAQ'] = self.daq_controller.last_config_dict
self.data_configs['Scanner'] = self.position_controller.last_config_dict
self.daq_controller.start()
def stop(self) -> None:
"""
This method is used to stop the scan. It should stop the scanning loop.
"""
self.running = False
def post_stop(self) -> None:
"""
This method is called after the scan is stopped.
It should do the necessary cleanup.
For example, it should stop the DAQ.
"""
self.daq_controller.stop()
def reset(self) -> None:
"""
Resets internal data structure. NB: this blows away any previously stored data.
"""
self.hyper_spectral_raw_data = None
self.hyper_spectral_wavelengths = None
self.data_clock_rate = None
self.data_configs = {'DAQ': None, 'Scanner': None}
self.data_saved_once = False
def set_to_starting_position(self) -> None:
self._current_y = self.ymin
self.position_controller.go_to_position(x=self.xmin, y=self.ymin)
def still_scanning(self) -> bool:
if self.running is False: # this allows external process to stop scan
return False
if self.current_y <= self.ymax: # stops scan when reaches final position
return True
else:
self.running = False
return False
def scan_x(self):
"""
Scans the x axis from xmin to xmax in steps of step_size.
"""
raw_counts_for_axis, wavelengths = (
self.scan_axis('x', self.xmin, self.xmax, self.step_size)
)
# raw_counts_for_axis is of shape (N steps, M spectrum size)
# wavelengths is of shape (M spectrum size,)
assert len(wavelengths) == raw_counts_for_axis.shape[-1]
# rehape raw_counts to
# (1, N, M)
raw_counts_for_axis = raw_counts_for_axis.reshape(1, len(raw_counts_for_axis), -1)
if self.hyper_spectral_raw_data is None:
self.hyper_spectral_raw_data = raw_counts_for_axis
self.logger.debug(f'Creating new hyperspectral array of shape: {self.hyper_spectral_raw_data.shape}')
else:
if self.hyper_spectral_raw_data.shape[-1] != raw_counts_for_axis.shape[-1]:
raise QT3Error("Inconsistent spectrum size obtained during scan_x! Check your hardware."
f"expected shape[-1] {self.hyper_spectral_raw_data.shape[-1]}. found {raw_counts_for_axis.shape[-1]}")
self.hyper_spectral_raw_data = np.vstack((self.hyper_spectral_raw_data, raw_counts_for_axis))
if self.hyper_spectral_wavelengths is None:
self.hyper_spectral_wavelengths = wavelengths
if np.array_equal(self.hyper_spectral_wavelengths, wavelengths) is False:
raise QT3Error("Inconsistent wavelength array obtained during scan_x! Check your hardware.")
def scan_axis(self, axis, min, max, step_size) -> Tuple[np.ndarray, np.ndarray]:
"""
Moves the microscope along the specified axis from min to max in steps of step_size.
Returns a tuple of two numpy arrays
The first numpy array is the raw spectrum from the scan in the shape
(N, M) where N is the number of positions along the axis and M
is the size of the spectrum
The second numpy array is an array of wavelength values for the spectrum of shape (M,)
"""
spectrums_in_scan = []
# we use these to check the returned spectrum
# and wavelength array for consistency.
# we also currently do not support the
# values of the wavelengths changing for each position
# that is, the spectrometer must scan over the same set of wavelengths each time.
wavelength_array = None
initial_spectrum_size = None
self.position_controller.go_to_position(**{axis: min})
time.sleep(self.raster_line_pause)
for val in np.arange(min, max + step_size, step_size):
self.position_controller.go_to_position(**{axis: val})
measured_spectrum, measured_wavelengths = self.daq_controller.sample_spectrum()
if initial_spectrum_size is None:
initial_spectrum_size = len(measured_spectrum)
if wavelength_array is None:
wavelength_array = measured_wavelengths
if initial_spectrum_size != len(measured_spectrum):
raise QT3Error("Inconsistent spectrum size obtained during scan! Check your hardware.")
if initial_spectrum_size != len(measured_wavelengths):
raise QT3Error("Inconsistent wavelength array size obtained during scan! Check your hardware.")
if len(measured_spectrum) != len(measured_wavelengths):
raise QT3Error(
"Inconsistent wavelength array and spectrum size obtained during scan! Check your hardware.")
if np.array_equal(wavelength_array, measured_wavelengths) is False:
raise QT3Error("Inconsistent wavelength array obtained during scan! Check your hardware.")
spectrums_in_scan.append(measured_spectrum)
return np.array(spectrums_in_scan), wavelength_array
def move_y(self) -> None:
if self.current_y <= self.ymax:
self._current_y += self.step_size
try:
self.position_controller.go_to_position(y=self.current_y)
except ValueError as e:
self.logger.info(f'move y: out of range\n\n{e}')
def optimize_position(
self, axis: str,
central: float,
range: float,
step_size: float
) -> Tuple[np.ndarray, np.ndarray, float, np.ndarray]:
"""
Performs a scan over a particular axis about `center_position`.
The scan ranges from center_position +- width and progresses with step_size.
Returns a tuple of
(raw_data, axis_positions, optimal_position, fit_coeff)
where
raw_data is an array of count rates at each position
axis_positions is an array of position values along the specified axis
optimal_position is a float position that represents the brightest position along the scan
fit_coeff is an array of coefficients (C, mu, sigma) that describe
the best-fit gaussian shape to the raw_data
C * np.exp( -(raw_data-mu)**2 / (2.*sigma**2) )
example:
([r0, r1, ...], [x0, x1, ...], x_optimal, [C, mu, sigma])
In cases where the data cannot be successfully fit to a gaussian function,
the optimal_position returned is the absolute brightest position in the scan,
and the fit_coeff is set to None.
When the fit is successful, x_optimal = mu.
"""
import scipy
def gauss(x, *p):
C, mu, sigma, offset = p
return C * np.exp(-(x - mu) ** 2 / (2. * sigma ** 2)) + offset
min_val = central - range
max_val = central + range
if self.position_controller:
min_val = np.max([min_val, self.position_controller.minimum_allowed_position])
max_val = np.min([max_val, self.position_controller.maximum_allowed_position])
self.start()
raw_data, wavelengths = self.scan_axis(axis, min_val, max_val, step_size)
self.stop()
self.post_stop()
axis_vals = np.arange(min_val, max_val + step_size, step_size)
wl_min, wl_max = min(self.filter_view_range), max(self.filter_view_range)
raw_data_in_range = raw_data[:, (wavelengths >= wl_min) & (wavelengths <= wl_max)]
raw_data_in_range -= self.raw_bg_counts
wls_in_range = wavelengths[(wavelengths >= wl_min) & (wavelengths <= wl_max)]
count_rates = self.counts_aggregation_method(wls_in_range, raw_data_in_range)
if not self.counts_aggregation_option.startswith('Axes'):
count_rates *= self.data_clock_rate
optimal_position = axis_vals[np.argmax(count_rates)]
coeff = None
params = [np.max(count_rates), optimal_position, 1.0, np.min(count_rates)]
bounds = ((0, -np.inf, 0, 0), (np.inf, np.inf, np.inf, np.inf))
try:
coeff, var_matrix = scipy.optimize.curve_fit(gauss, axis_vals, count_rates, p0=params, bounds=bounds)
optimal_position = coeff[1]
# ensure that the optimal position is within the scan range
optimal_position = np.max([min_val, optimal_position])
optimal_position = np.min([max_val, optimal_position])
except RuntimeError as e:
self.logger.warning(e)
return count_rates, axis_vals, optimal_position, coeff
def set_scan_range(self, xmin: float, xmax: float, ymin: float, ymax: float) -> None:
"""
This method is used to set the scan range and is called in qt3scan.main
"""
self.position_controller.check_allowed_position(xmin, ymin)
self.position_controller.check_allowed_position(xmax, ymax)
self._ymin = ymin
self._ymax = ymax
self._xmin = xmin
self._xmax = xmax
def get_completed_scan_range(self) -> Tuple[float, float, float, float]:
"""
Returns a tuple of the scan range that has been completed
:return: xmin, xmax, ymin, current_y
"""
return self.xmin, self.xmax, self.ymin, self.current_y
def save_scan(self, afile_name) -> None:
file_type = afile_name.split('.')[-1]
data = dict(
wavelengths=self.hyper_spectral_wavelengths,
hyperspectral_image=self.hyper_spectral_raw_data,
scan_range=self.get_completed_scan_range(),
raw_counts=self.scanned_raw_counts,
count_rate=self.scanned_count_rate,
step_size=self.step_size,
daq_clock_rate=self.data_clock_rate,
bg_raw_counts=self.raw_bg_counts,
filter_range=self.filter_view_range,
counts_aggregation_option=self.counts_aggregation_option,
daq_config=self.data_configs['DAQ'],
scanner_config=self.data_configs['Scanner']
)
if file_type == 'npy':
np.save(afile_name, data['count_rate'])
elif file_type == 'npz':
np.savez_compressed(afile_name, **data)
elif file_type == 'h5':
with h5py.File(afile_name, 'w') as h5file:
for key, value in data.items():
if key not in ['daq_config', 'scanner_config']:
h5file.create_dataset(key, data=value)
else:
h5file.attrs[key] = json.dumps(value)
elif file_type == 'pkl':
with open(afile_name, 'wb') as f:
pickle.dump(data, f)
else:
return
self.data_saved_once = True
def load_scan(self, afile_name):
file_type = afile_name.split('.')[-1]
if file_type == 'npy':
logging.error('Filetype "npy" is not supported for loading scans.')
return
elif file_type == 'npz':
data_dict = dict(np.load(afile_name, allow_pickle=True))
for key, value in data_dict.items():
if len(value.shape) == 0:
data_dict[key] = value[()]
elif file_type == 'h5':
with h5py.File(afile_name, 'r') as h5file:
data_dict = {}
for key in h5file.keys():
try:
data_dict[key] = h5file[key][:]
except ValueError:
data_dict[key] = h5file[key][()]
for key, value in dict(h5file.attrs).items():
data_dict[key] = json.loads(value)
elif file_type == 'pkl':
with open(afile_name, 'rb') as f:
data_dict = pickle.load(f)
self.hyper_spectral_wavelengths = data_dict.get('wavelengths', None)
self.hyper_spectral_raw_data = data_dict.get('hyperspectral_image', None)
self._xmin, self._xmax, self._ymin, self._current_y = \
data_dict.get('scan_range', (
self.position_controller.minimum_allowed_position,
self.position_controller.maximum_allowed_position,
self.position_controller.minimum_allowed_position,
self.position_controller.maximum_allowed_position)
)
self._step_size = data_dict.get('step_size', 0.5)
self._ymax = self.current_y - self.step_size
self.data_clock_rate = data_dict.get('daq_clock_rate', None)
self.filter_view_range = data_dict.get('filter_range', (-np.inf, np.inf))
self.raw_bg_counts = data_dict.get('bg_raw_counts', 0.)
self.counts_aggregation_option = (
data_dict.get('counts_aggregation_option', list(STANDARD_COUNT_AGGREGATION_METHODS.keys())[0]))
self.data_configs['DAQ'] = data_dict.get('daq_config', None)
self.data_configs['Scanner'] = data_dict.get('scanner_config', None)
self.data_saved_once = True
@staticmethod
def allowed_file_save_formats() -> list:
"""
Returns a list of tuples of the allowed file save formats
[(description, file_extension), ...]
"""
formats = [('Compressed Numpy MultiArray', '*.npz'),
('Numpy Array (count rate only)', '*.npy'),
('HDF5', '*.h5'),
('Pickle', '*.pkl'),
]
return formats
@staticmethod
def default_file_format() -> str:
"""
Returns the default file format
"""
return '.npz'
def scan_image_rightclick_event(self, event: MouseEvent, index_x: int, index_y: int) -> None:
"""
This method is called when the user right-clicks on the scan image.
"""
self.logger.debug(f"Mouse Event {event}")
if event.xdata is None or event.ydata is None:
return
win = tk.Toplevel()
win.title(f'Spectrum for location (x,y): {np.round(event.xdata, 4)}, {np.round(event.ydata, 4)}')
fig, ax = plt.subplots()
ax: plt.Axes
ax.set_xlabel('Wavelength (nm)')
ax.set_ylabel('Counts / bin')
self.logger.debug(
f'Selecting {index_y}, {index_x} from hyper spectral array of shape {self.hyper_spectral_raw_data.shape}')
selected_spectrum = self.hyper_spectral_raw_data[index_y, index_x, :]
ax.plot(self.hyper_spectral_wavelengths, selected_spectrum, label='data')
ax.grid(True)
min_range, max_range = self.filter_view_range
if not (min_range == -np.inf and max_range == np.inf):
if min_range == -np.inf:
min_range = np.min(self.hyper_spectral_wavelengths)
if max_range == np.inf:
max_range = np.max(self.hyper_spectral_wavelengths)
# ax.axvline(min_range, color='k', linestyle='--')
# ax.axvline(max_range, color='k', linestyle='--')
ax.axvspan(min_range, max_range, alpha=0.1, color='k', label='Filter Range')
if self.raw_bg_counts != 0.:
ax.axhline(self.raw_bg_counts, linestyle='--', alpha=0.5, color='chocolate', label='BG')
if self.counts_aggregation_option == 'Axes-Weighted-Mean':
ax.axvline(self.scanned_raw_counts[index_y, index_x], alpha=0.5, color='r', label='center')
canvas = FigureCanvasTkAgg(fig, master=win)
canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
toolbar = NavigationToolbar2Tk(canvas, win)
toolbar.update()
canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
canvas.draw()