-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathesvm_train_exemplars.m
243 lines (192 loc) · 5.97 KB
/
esvm_train_exemplars.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [newmodels,new_models_name] = ...
esvm_train_exemplars(models, train_set, params)
% Train models with hard negatives mined from train_set
% [models]: a cell array of initialized exemplar models
% [train_set]: a virtual set of images to mine from
% [params]: localization and training parameters
% Copyright (C) 2011-12 by Tomasz Malisiewicz
% All rights reserved.
%
% This file is part of the Exemplar-SVM library and is made
% available under the terms of the MIT license (see COPYING file).
% Project homepage: https://github.com/quantombone/exemplarsvm
if length(models) == 0
newmodels = models;
new_models_name = '';
return;
end
if length(params.dataset_params.localdir)==0
CACHE_FILE = 0;
else
CACHE_FILE = 1;
end
models_name = models{1}.models_name;
new_models_name = [models_name params.training_function()];
cache_dir = ...
sprintf('%s/models/',params.dataset_params.localdir);
cache_file = ...
sprintf('%s/%s.mat',cache_dir,new_models_name);
cache_file_stripped = ...
sprintf('%s/%s-stripped.mat',cache_dir,new_models_name);
if CACHE_FILE == 1 && fileexists(cache_file_stripped)
newmodels = load(cache_file_stripped);
newmodels = newmodels.models;
return;
end
if CACHE_FILE == 1 && fileexists(cache_file)
newmodels = load(cache_file);
newmodels = newmodels.models;
return;
end
DUMPDIR = sprintf('%s/www/svs/%s/',params.dataset_params.localdir, ...
new_models_name);
%display of SV pdfs disabled
%if CACHE_FILE==1 && params.dataset_params.display ==1 && ~exist(DUMPDIR,'dir')
% mkdir(DUMPDIR);
%end
final_directory = ...
sprintf('%s/models/%s/',params.dataset_params.localdir,...
new_models_name);
%make results directory if needed
if CACHE_FILE == 1 && ~exist(final_directory,'dir')
mkdir(final_directory);
end
% randomize chunk orderings
if CACHE_FILE == 1
myRandomize;
ordering = randperm(length(models));
else
ordering = 1:length(models);
end
models = models(ordering);
allfiles = cell(length(models), 1);
for i = 1:length(models)
filer = '';
m = models{i};
[complete_file] = sprintf('%s/%s.mat',final_directory,m.name);
[basedir, basename, ext] = fileparts(complete_file);
filer2fill = sprintf('%s/%%s.%s.mat',basedir,basename);
filer2final = sprintf('%s/%s.mat',basedir,basename);
allfiles{i} = filer2final;
% Check if we are ready for an update
filerlock = [filer2final '.mining.lock'];
if CACHE_FILE == 1
if fileexists(filer2final) || (mymkdir_dist(filerlock) == 0)
continue
end
end
% Add training set and training set's mining queue
m.train_set = train_set;
m.mining_queue = esvm_initialize_mining_queue(m.train_set);
% Add mining_params, and params.dataset_params to this exemplar
m.mining_params = params;
m.dataset_params = params.dataset_params;
% Append '-svm' to the mode to create the models name
m.models_name = new_models_name;
m.iteration = 1;
%if we are a distance function, initialize to uniform weights
if isfield(params,'wtype') && ...
strcmp(params.wtype,'dfun')==1
m.model.w = m.model.w*0-1;
m.model.b = -1000;
end
% The mining queue is the ordering in which we process new images
keep_going = 1;
while keep_going == 1
%Get the name of the next chunk file to write
filer2 = sprintf(filer2fill,num2str(m.iteration));
if ~isfield(m,'mining_stats')
total_mines = 0;
else
total_mines = sum(cellfun(@(x)x.total_mines,m.mining_stats));
end
m.total_mines = total_mines;
m = esvm_mine_train_iteration(m, params.training_function);
if ((total_mines >= params.train_max_mined_images) || ...
(isempty(m.mining_queue))) || ...
(m.iteration == params.train_max_mine_iterations)
keep_going = 0;
%bump up filename to final file
filer2 = filer2final;
end
%HACK: remove train_set which causes save issue when it is a
%cell array of function pointers
msave = m;
m = rmfield(m,'train_set');
%Save the current result
if CACHE_FILE == 1
savem(filer2,m);
else
allfiles{i} = m;
end
m = msave;
% if params.dataset_params.display == 1
% if params.dataset_params.write_after_display == 1
% exid = ordering(i);
% filer = sprintf('%s/%s.%s.%05d.png', DUMPDIR, 'train', ...
% m.cls,exid);
% if fileexists(filer)
% continue
% end
% end
% figure(445);
% clf;
% showI = esvm_show_det_stack(m,5,5);
% imagesc(showI);
% title('Exemplar and Top Dets');
% drawnow;
% figure(235)
% rpos = m.model.w(:)'*m.model.x-m.model.b;
% rneg = m.model.w(:)'*m.model.svxs - m.model.b;
% clf;
% plot(sort(rpos,'descend'),'r.');
% hold on;
% plot(length(rpos)+(1:length(rneg)),rneg,'b.');
% drawnow;
% if params.dataset_params.write_after_display == 1
% set(gcf,'PaperPosition',[0 0 20 20]);
% imwrite(showI,filer);
% end
% end
%delete old files
if m.iteration > 1
for q = 1:m.iteration-1
filer2old = sprintf(filer2fill,num2str(q));
if fileexists(filer2old)
if CACHE_FILE == 1
delete(filer2old);
end
end
end
end
if keep_going==0
fprintf(1,' ### End of training... \n');
break;
end
m.iteration = m.iteration + 1;
end %iteratiion
try
if CACHE_FILE == 1
rmdir(filerlock);
end
catch
fprintf(1,'Cannot delete %s\n',filerlock);
end
end
if CACHE_FILE == 0
newmodels = allfiles;
return;
end
[allfiles] = sort(allfiles);
%Load all of the initialized exemplars
CACHE_FILE = 1;
STRIP_FILE = 1;
if new_models_name(1) == '-'
CACHE_FILE = 0;
STRIP_FILE = 0;
end
DELETE_INITIAL = 0;
newmodels = esvm_load_models(params.dataset_params, new_models_name, allfiles, ...
CACHE_FILE, STRIP_FILE, DELETE_INITIAL);
function savem(filer2,m)
save(filer2,'m');