-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocessingFunctions.py
312 lines (280 loc) · 14.1 KB
/
processingFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#%% <import modules>
import skimage as sk
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import os
import pandas as pd
import math
from scipy import ndimage as ndi
import imageio
import nd2
#%%
def getImg(channel, data_path):
if ".nd2" in data_path:
vol= nd2.imread(data_path)
else:
vol=imageio.volread(data_path)
img=vol[:,channel,:,:]
stacks= np.shape(img)[0]
return img, stacks
def filteredImg(prepro, thresh):
cells=np.where(prepro >=thresh, 1, 0)
filtered=ndi.median_filter(cells, size=5)
eroded=ndi.binary_erosion(filtered)
dilated= ndi.binary_dilation(eroded, iterations=1)
eroded=ndi.binary_erosion(dilated, iterations=2)
filt=ndi.median_filter(eroded, size=5)
return filt
def removeAxons(img, min_distance=10):
distance = ndi.distance_transform_edt(img)
local_max_coords = sk.feature.peak_local_max(distance, min_distance, num_peaks_per_label=2)
local_max_mask = np.zeros(distance.shape, dtype=bool)
local_max_mask[tuple(local_max_coords.T)] = True
markers = sk.measure.label(local_max_mask)
segNeu = sk.segmentation.watershed(-distance, markers, mask=img) #segmented neuron
return segNeu
def show_original_filt (original, filt):
fig, (ax1, ax2) = plt.subplots(1,2)
ax1.imshow(original, cmap="gray_r")
ax2.imshow(filt, cmap="gray_r")
ax1.set_axis_off()
ax2.set_axis_off()
plt.tight_layout()
def show_labels(img, img_original, circ, axis_min, axis_limit, axis_ratio, remove_axon=None):
if remove_axon is None:
label_image= sk.measure.label(img)
else:
label_image=removeAxons(img)
image_label_overlay = sk.color.label2rgb(label_image, image=img, bg_label=0)
f, (ax1, ax2)=plt.subplots(1,2)
#fig, ax2 = plt.subplots(figsize=(10, 6))
ax1.imshow(img_original, cmap="gray_r")
ax2.imshow(image_label_overlay, cmap="gray_r")
for region in sk.measure.regionprops(label_image):
# take regions with large enough areas
if region.eccentricity<=circ:
if region.axis_major_length <= axis_limit:
if region.axis_minor_length >=axis_min:
if region.axis_minor_length / region.axis_major_length >=axis_ratio:
# draw rectangle around segmented coins
minr, minc, maxr, maxc = region.bbox
rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,
fill=False, edgecolor='red', linewidth=0.5)
ax2.add_patch(rect)
ax1.set_axis_off()
ax2.set_axis_off()
plt.tight_layout()
plt.show()
class getThresh:
def __init__(self, img):
self.img= img
def thresh(self, thresh_dict, int_dict):
denoise=sk.restoration.denoise_wavelet(self.img)
blurred = sk.filters.gaussian(denoise, sigma=2.0)
if thresh_dict.get("is_intensity_low") ==0:
prepro=blurred
else:
prepro= sk.exposure.equalize_adapthist(blurred, kernel_size=127,clip_limit=0.01, nbins=256)
t_thresh=sk.filters.threshold_otsu(prepro)
#filter images with too low or too bright intensities
if np.percentile(prepro, 25)<= int_dict.get("low_int"): #this is a safety net for images with too little intensity, you can try and adjust this if needed
thresh= t_thresh + np.percentile(prepro, thresh_dict.get("high_int_thresh"))
elif np.percentile(prepro,99)>= int_dict.get("high_int"):
thresh= t_thresh + np.percentile(prepro, thresh_dict.get("low_int_thresh")) #this is a safety net for images with too much intensity, you can also try and adjust this if needed
else:
if t_thresh/np.median(prepro)>=int_dict.get("int_cutoff_up"):
thresh= t_thresh + np.percentile(prepro, thresh_dict.get("extra_bright_thresh"))
else:
if t_thresh/np.median(prepro)<=int_dict.get("int_cutoff"):
if t_thresh/np.median(prepro)<=int_dict.get("int_cutoff_down"): #before int_cutoff*0.66
thresh=t_thresh + np.percentile(prepro, thresh_dict.get("low_thresh"))
else:
thresh= t_thresh + np.percentile(prepro, thresh_dict.get("top_thresh"))
else:
thresh= t_thresh + np.percentile(prepro, thresh_dict.get("mid_thresh"))
filtFos=filteredImg(prepro, thresh)
return filtFos
def intInfo(self, stacks, int_dict, is_intensity_low=0):
intInfo= pd.DataFrame(columns=["stack","classifier value", "25 p", "99 p", "threshold applied"])
for i in range(stacks):
denoise=sk.restoration.denoise_wavelet(self.img[i])
blurred = sk.filters.gaussian(denoise, sigma=2.0)
if is_intensity_low ==0:
prepro=blurred
else:
prepro= sk.exposure.equalize_adapthist(blurred, kernel_size=127,clip_limit=0.01, nbins=256)
thresh=sk.filters.threshold_otsu(prepro)
if np.percentile(prepro, 25)<= int_dict.get("low_int"):
cat= "high_int_thresh"
elif np.percentile(prepro,99)>= int_dict.get("high_int"):
cat= "low_int_thresh"
else:
if thresh/np.median(prepro)>=int_dict.get("int_cutoff_up"):
cat= "extra_bright_thresh"
else:
if thresh/np.median(prepro)<=int_dict.get("int_cutoff"):
if thresh/np.median(prepro)<=int_dict.get("int_cutoff_down"):
cat= "low_thresh"
else:
cat= "top thresh"
else:
cat= "mid thresh"
val_list= [i, thresh/np.median(prepro),np.percentile(prepro, 25), np.percentile(prepro, 99), cat]
c_series = pd.Series(val_list, index = intInfo.columns)
intInfo = intInfo.append(c_series, ignore_index=True)
return intInfo
class getCoords:
def __init__ (self, img, stacks, circ, axis_ratio, axis_min, axis_limit, remove_axon=None):
self.img= img
self.stacks= stacks
self.circ= circ
self.axis_ratio = axis_ratio
self.axis_min= axis_min
self.axis_limit= axis_limit
self.remove_axon= remove_axon
def coords(self, filt, i):
blobs_coords=pd.DataFrame(columns=["x","y","z"])
if self.remove_axon is None:
labels= sk.measure.label(filt)
else:
labels= removeAxons(filt)
#labels = sk.measure.label(filt)
#props = sk.measure.regionprops_table(labels, properties=('centroid','axis_major_length','axis_minor_length', 'bbox', 'equivalent_diameter_area','label', 'eccentricity'))
props = sk.measure.regionprops_table(labels, properties=('centroid','axis_major_length','axis_minor_length', 'bbox', 'equivalent_diameter_area','label', 'eccentricity',), cache=False)
props_table=pd.DataFrame(props)
props_filtered = props_table[props_table['eccentricity'] <= self.circ]
#props_filtered = props_table[props_table['axis_minor_length'] >= axis_min]
props_filtered=props_filtered[props_filtered['axis_minor_length'] >= self.axis_min]
props_filtered=props_filtered[props_filtered['axis_major_length'] <= self.axis_limit]
props_filtered=props_filtered[(props_filtered['axis_minor_length']/props_filtered['axis_major_length']) >= self.axis_ratio]
#props_filtered=props_filtered[props_filtered['eccentricity'] <= circ]
blobs_coords["x"]=props_filtered["centroid-0"]
blobs_coords["y"]=props_filtered["centroid-1"]
blobs_coords["z"]=i
return blobs_coords
def coordsCells(self, thresh_dict, int_dict):
blobs=pd.DataFrame(columns=["x","y","z"])
for i in range(self.stacks):
img_c=self.img[i]
filt=getThresh(img_c).thresh(thresh_dict, int_dict)
blobs_coords=self.coords(filt, i)
blobs=pd.concat([blobs,blobs_coords], ignore_index=True)
return blobs
class getOverlap:
def __init__(self, stacks, dist_thresh):
self.stacks=stacks
self.dist_thresh=dist_thresh
#overlapping coordinates between z-stacks of one cell type
def overlap_coords(self, blobs):
overlap=pd.DataFrame(columns=["x1","y1","z1","x2","y2","z2","dist"])
for i in range(self.stacks):
for index, row in blobs.iterrows():
if row["z"]==i:
for index_2, row_2 in blobs.iterrows():
if row_2["z"]== (i+1):
#dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
dist= math.sqrt((row_2["x"]-row["x"])**2 + (row_2["y"]-row["y"])**2)
if dist< self.dist_thresh:
ov_list=(row["x"], row["y"], row["z"],row_2["x"],row_2["y"],row_2["z"],dist)
a_series = pd.Series(ov_list, index = overlap.columns)
overlap = overlap.append(a_series, ignore_index=True)
return overlap
#overlap between two cell types
def overlap_cells(self, blobs1, blobs2):
overlap=pd.DataFrame(columns=["x1","y1","z1","x2","y2","z2","dist"])
for i in range(self.stacks):
for index, row in blobs1.iterrows():
if row["z"]==i:
for index_2, row_2 in blobs2.iterrows():
if row_2["z"]== (i):
#dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
dist= math.sqrt((row_2["x"]-row["x"])**2 + (row_2["y"]-row["y"])**2)
if dist< self.dist_thresh:
ov_list=(row["x"], row["y"], row["z"],row_2["x"],row_2["y"],row_2["z"],dist)
a_series = pd.Series(ov_list, index = overlap.columns)
overlap = overlap.append(a_series, ignore_index=True)
return overlap
#overlap of overlap
def overlap_cells_img(self, ov_cells):
overlap=pd.DataFrame(columns=["x1","y1","z1","x2","y2","z2","dist"])
for i in range(self.stacks):
for index, row in ov_cells.iterrows():
if row["z1"]==i:
for index_2, row_2 in ov_cells.iterrows():
if row_2["z1"]== (i+1):
#dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
dist= math.sqrt((row_2["x1"]-row["x1"])**2 + (row_2["y1"]-row["y1"])**2)
if dist< self.dist_thresh:
ov_list=(row["x1"], row["y1"], row["z1"],row_2["x1"],row_2["y1"],row_2["z1"],dist)
a_series = pd.Series(ov_list, index = overlap.columns)
overlap = overlap.append(a_series, ignore_index=True)
return overlap
#overlap of three types of cells
def overlap_all(self, ov12, blobs3):
overlap=pd.DataFrame(columns=["x1","y1","z1","x2","y2","z2","dist","x3","y3","z3", "dist23"]) #dist is dist12
for i in range(self.stacks):
for index, row in ov12.iterrows():
if row["z1"]==i:
for index_2, row_2 in blobs3.iterrows():
if row_2["z"]== (i):
#dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
dist= math.sqrt((row_2["x"]-row["x1"])**2 + (row_2["y"]-row["y1"])**2)
if dist< self.dist_thresh:
ov_list=(row["x1"], row["y1"], row["z1"],row["x2"],row["y2"],row["z2"],row["dist"],row_2["x"],row_2["y"],row_2["z"],dist)
a_series = pd.Series(ov_list, index = overlap.columns)
overlap = overlap.append(a_series, ignore_index=True)
return overlap
class intensitySaver:
def __init__(self, path, files, channel, is_intensity_low):
self.path=path
self.files=files
self.channel= channel
self.is_intensity_low= is_intensity_low
def getInts(self):
ints= pd.DataFrame(columns=["25 percentile", "median", "99 percentile", "thresh/median"])
for filename in self.files:
name= self.path + "/" + filename
fos, stacks=getImg(self.channel, name)
for i in range(stacks):
denoise=sk.restoration.denoise_wavelet(fos[i])
blurred = sk.filters.gaussian(denoise, sigma=2.0)
if self.is_intensity_low ==0:
prepro=blurred
else:
prepro= sk.exposure.equalize_adapthist(blurred, kernel_size=127,clip_limit=0.01, nbins=256)
thresh=sk.filters.threshold_otsu(prepro)
p25= np.percentile(prepro, 25)
med=np.median(prepro)
p99= np.percentile(prepro, 99)
th_med= thresh/np.median(prepro)
val_list=(p25, med, p99, th_med)
c_series = pd.Series(val_list, index = ints.columns)
ints= ints.append(c_series, ignore_index=True)
return ints
def getIntensityValues(self):
ints=self.getInts()
#get int cut off values
low_int= ints["25 percentile"].quantile(0.05)
high_int=ints["99 percentile"].quantile(0.95)
int_cutoff= ints["thresh/median"].median()/2
int_cutoff_up= ints["thresh/median"].quantile(0.85)
int_cutoff_down= ints["thresh/median"].quantile(0.15)
#reorder intensity cut off points if necessary
if int_cutoff_down> int_cutoff:
saver=int_cutoff_down
int_cutoff_down=int_cutoff
int_cutoff=saver
if int_cutoff_up< int_cutoff:
saver= int_cutoff
int_cutoff=int_cutoff_up
int_cutoff_up= saver
#make dictionary
int_dic={
"low_int": low_int,
"high_int": high_int,
"int_cutoff_up": int_cutoff_up,
"int_cutoff": int_cutoff,
"int_cutoff_down": int_cutoff_down
}
return int_dic