-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathastar_geo.py
191 lines (154 loc) · 7.54 KB
/
astar_geo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from math import sqrt
import matplotlib.pyplot as plt
import heapq
import numpy as np
from geo_coords import *
from obstacle import *
from numba import jit
# example of image on map plot: http://scitools.org.uk/cartopy/docs/latest/matplotlib/advanced_plotting.html
# adapted from: https://www.laurentluce.com/posts/solving-mazes-using-python-simple-recursivity-and-a-search/
#check
class Node(object):
def __init__(self, x, y, lat, lon, obstacle):
self.obstacle = obstacle
self.x = x
self.y = y
self.parent = None
self.g = 0 # node-start
self.h = 0 # node-target
self.f = 0 # g + h
self.lat = lat
self.lon = lon
class AStar(object):
def __init__(self):
self.open = []
heapq.heapify(self.open)
self.closed = set()
self.nodes = []
self.grid_height = None
self.grid_width = None
# todo: use equivalent of function pointers to make the line below cleaner
self.heuristic_type = 1 # 1 = pythagoras, 2 = manhattan distance
self.geo_path = []
self.grid_path = []
self.obstacles = []
def init_grid3(self, start, end, obstacles, geo_coords, width, height):
self.grid_width = width
self.grid_height = height
self.obstacles = obstacles
# Use KD tree to find xy coordinates that match obstacle locations (distance = 0), set obstacle flag
xyTree = scipy.spatial.cKDTree(geo_coords[:, 0:2]) # tree in x,y columns
dists, obstacle_indices = xyTree.query(obstacles) # all of the obstacle locs actually on the grid will return zero for distance
obstacle_indices = obstacle_indices[dists == 0.0] # retrieve only indices for obstacle points on the grid
geo_coords[obstacle_indices,4] = 1 # flag obstacles
# create the list of nodes
self.nodes = [Node(int(row[0]), int(row[1]), row[2], row[3], row[4]) for row in geo_coords]
self.start = self.get_node(*start)
self.end = self.get_node(*end)
def gen_points(self, width, height, obstacles):
x, y = np.mgrid[0:width, 0:height]
# creates x and y columns: https://stackoverflow.com/questions/12864445/numpy-meshgrid-points/12891609
positions = np.column_stack([x.ravel(),y.ravel()])
for row in obstacles:
admissable = np.not_equal(positions, row)
admissable = np.logical_or(admissable[:, 0], admissable[:,1]) # required because not_equal does element wise, not row wise. Blocks off rows that entirely match obstacle
positions = positions[admissable]
return positions
def heuristic(self, current, target): # pythag distance
return sqrt((current.x-target.x)**2 + (current.y-target.y)**2)
def heuristic2(self, cell): # manhattan distance
return 10 * (abs(cell.x - self.end.x) + abs(cell.y - self.end.y))
def get_node(self, x, y):
return self.nodes[x * self.grid_height + y] # they're linear indexed
def get_neighbours(self, node):
neighbours = []
if node.x < self.grid_width - 1:
neighbours.append(self.get_node(node.x + 1, node.y))
if node.y > 0:
neighbours.append(self.get_node(node.x, node.y - 1))
if node.x > 0:
neighbours.append(self.get_node(node.x - 1, node.y))
if node. y < self.grid_height - 1:
neighbours.append(self.get_node(node.x, node.y + 1))
if node.y > 0 and node.y < self.grid_height -1 and node.x < self.grid_width-1: # up, right
neighbours.append(self.get_node(node.x + 1, node.y + 1))
if node.y > 0 and node.y < self.grid_height -1 and node.x > 0: # up, left
neighbours.append(self.get_node(node.x - 1, node.y + 1))
if node.y > 1 and node.y < self.grid_height and node.x < self.grid_width -1: # down, right # check if I can extend grid height by 1
neighbours.append(self.get_node(node.x + 1, node.y - 1))
if node.y > 1 and node.y < self.grid_height and node.x > 0: # down, left
neighbours.append(self.get_node(node.x - 1, node.y - 1))
return neighbours
@jit
def show_path(self):
node = self.end
path = []
self.grid_path.append((node.x, node.y))
self.geo_path.append((node.lat, node.lon))
while node.parent is not self.start:
node = node.parent
self.grid_path.append((node.x, node.y))
self.geo_path.append((node.lat, node.lon))
# print node.x, node.y
self.grid_path.append((self.start.x, self.start.y))
self.geo_path.append((self.start.lat, self.start.lon))
self.grid_path.reverse()
self.geo_path.reverse()
return path
def update_node(self, nextNode, node):
# updates the next node
if self.heuristic_type is 1: # pythagoras
nextNode.g = self.heuristic(nextNode, self.start)
nextNode.h = self.heuristic(nextNode, self.end)
elif self.heuristic_type is 2:
nextNode.g = node.g + 10 # manhattan distance
nextNode.h = self.heuristic2(nextNode) # self.heuristic2(nextNode) #self.heuristic(nextNode, self.end)
nextNode.f = nextNode.g + nextNode.h
nextNode.parent = node
@jit
def process(self):
heapq.heappush(self.open, (self.start.f, self.start)) # add starting node to top of heap
while len(self.open):
f, node = heapq.heappop(self.open) # pop node from queue
self.closed.add(node) # add to closed
if node is self.end: # finished, find the path
return self.show_path()
neighbours = self.get_neighbours(node) # grab current node's neighbours
for neighbour in neighbours:
if not neighbour.obstacle and neighbour not in self.closed:
if (neighbour.f, neighbour) in self.open:
# of the neighbours, select one with the optimal heuristic depending on which heuristic is being used
if self.heuristic_type is 1:
if neighbour.h < node.h:
self.update_node(neighbour, node)
elif self.heuristic_type is 2: # if neighbour is in open list, check if current path is better than the one previously found for this neighbour
if neighbour.g > node.g + 10:
self.update_node(neighbour, node)
else:
self.update_node(neighbour, node)
heapq.heappush(self.open, (neighbour.f, neighbour))
print 'died'
def plot_all(self):
xobs, yobs = zip(*self.obstacles)
plt.axis([-1, self.grid_width, -1, self.grid_height])
plt.plot(xobs, yobs, 'ko')
plt.grid()
# Plot path
x, y = zip(*self.grid_path)
plt.plot(x, y, '-gd')
plt.show()
if __name__ == '__main__':
# configs
num_obstacles = 5 # With very rectangular grids, many obstacles will be out of range so you'll get fewer than this
geo = GeoCoords([49.128397,-122.796805], [49.129779,-122.790330],2) # flight bounds (SW, NE), spatial resolution
# obstacles = genTestObstaclesGeo(5, geo, 10)
obstacles = genObstaclesGeo(geo, [(49.12927299, -122.79221177, 10)])
print geo.width, geo.height
width = geo.width
height = geo.height
# run the algorithm
astar = AStar()
astar.init_grid3([0, 0], [width - 1,height - 1], obstacles, geo.gridpoints,width, height)
astar.process()
print astar.grid_path
astar.plot_all()