-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuzzyModel.m
107 lines (73 loc) · 2.28 KB
/
fuzzyModel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
function [MaxAccuracy,Ym,YClassOptimal,YClass,FM,clusterNumber] = fuzzyModel(trainingData,trainingClass,testingData,testingClass)
Input = trainingData';
Output = trainingClass';
DAT.U=Input; %Feature 1 e 3
DAT.Y=Output(:,1); % Basta uma das linhas do metaTargets
clusterNumber(1)=2;
for j=1:20
clusterNumber(j) = clusterNumber(1) + j - 1;
STR.c = clusterNumber(j);
[FM,~] = fmclust(DAT,STR);
[Ym,~,~,~,~] = fmsim(testingData',testingClass',FM);
%Threshold to define if fake or true
Threshold = 0.00;
MaxAccuracy(j) = 0.00;
MaxThreshold = 0.00;
while(Threshold < 1.00)
for i = 1:size(Ym)
if Ym(i) > Threshold
YClass(i) = 1;
else
YClass(i) = 0;
end
end
%plotconfusion(testingClass(1,:),YClass)
stats = confusionmatStats(testingClass(1,:),YClass);
if MaxAccuracy(j) < stats.accuracy
MaxAccuracy(j) = stats.accuracy;
MaxThreshold = Threshold;
end
Threshold = Threshold + 0.01;
end
for i = 1:size(Ym)
if Ym(i) > MaxThreshold
YClassOptimal(i) = 1;
else
YClassOptimal(i) = 0;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maximum = max(MaxAccuracy);
[~,highestCluster]=find(MaxAccuracy==maximum);
STR.c = clusterNumber(highestCluster(1));
[FM,~] = fmclust(DAT,STR);
[Ym,~,~,~,~] = fmsim(testingData',testingClass',FM);
%Threshold to define if fake or true
Threshold = 0.00;
MaxAccuracy(j) = 0.00;
MaxThreshold = 0.00;
while(Threshold < 1.00)
for i = 1:size(Ym)
if Ym(i) > Threshold
YClass(i) = 1;
else
YClass(i) = 0;
end
end
%plotconfusion(testingClass(1,:),YClass)
stats = confusionmatStats(testingClass(1,:),YClass);
if MaxAccuracy(j) < stats.accuracy
MaxAccuracy(j) = stats.accuracy;
MaxThreshold = Threshold;
end
Threshold = Threshold + 0.01;
end
for i = 1:size(Ym)
if Ym(i) > MaxThreshold
YClassOptimal(i) = 1;
else
YClassOptimal(i) = 0;
end
end
end