-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexstracs_algorithm.py
726 lines (664 loc) · 46.2 KB
/
exstracs_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
"""
Name: ExSTraCS_Algorithm.py
Authors: Ryan Urbanowicz - Written at Dartmouth College, Hanover, NH, USA
Contact: ryan.j.urbanowicz@darmouth.edu
Created: April 25, 2014
Modified: August 25,2014
Description: The major controlling module of ExSTraCS. Includes the major run loop which controls learning over a specified number of iterations. Also includes
periodic tracking of estimated performance, and checkpoints where complete evaluations of the ExSTraCS rule population is performed.
---------------------------------------------------------------------------------------------------------------------------------------------------------
ExSTraCS V2.0: Extended Supervised Tracking and Classifying System - An advanced LCS designed specifically for complex, noisy classification/data mining tasks,
such as biomedical/bioinformatics/epidemiological problem domains. This algorithm should be well suited to any supervised learning problem involving
classification, prediction, data mining, and knowledge discovery. This algorithm would NOT be suited to function approximation, behavioral modeling,
or other multi-step problems. This LCS algorithm is most closely based on the "UCS" algorithm, an LCS introduced by Ester Bernado-Mansilla and
Josep Garrell-Guiu (2003) which in turn is based heavily on "XCS", an LCS introduced by Stewart Wilson (1995).
Copyright (C) 2014 Ryan Urbanowicz
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABLILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
---------------------------------------------------------------------------------------------------------------------------------------------------------
"""
#Import Required Modules-------------------------------
from exstracs_constants import *
from exstracs_classifierset import ClassifierSet
from exstracs_prediction import *
from exstracs_at import *
from exstracs_rc import RuleCompaction
from exstracs_classaccuracy import ClassAccuracy
from exstracs_output import OutputFileManager
from exstracs_pareto_ls import FitnessLandscape
from exstracs_plot import *
import copy
import random
import math
#------------------------------------------------------
class ExSTraCS:
def __init__(self):
""" Initializes the ExSTraCS algorithm """
print("ExSTraCS: Initializing Algorithm...")
#Global Parameters-------------------------------------------------------------------------------------
self.population = None
self.learnTrackOut = None #Output file that stores tracking information during learning
#-------------------------------------------------------
# POPULATION REBOOT - Begin ExSTraCS learning from an existing saved rule population
#-------------------------------------------------------
if cons.doPopulationReboot: #If we are restarting from a previously saved rule population.
try: #Re-open track learning file for continued tracking of progress.
self.learnTrackOut = open(cons.outFileName+'_LearnTrack.txt','a')
except IOError as xxx_todo_changeme:
(errno, strerror) = xxx_todo_changeme.args
print(("I/O error(%s): %s" % (errno, strerror)))
raise
self.populationReboot()
#-------------------------------------------------------
# NORMAL ExSTraCS - Run ExSTraCS from scratch on given data
#-------------------------------------------------------
else:
try: #Establish output file to store learning progress.
self.learnTrackOut = open(cons.outFileName+'_LearnTrack.txt','w')
self.learnTrackOut.write("Epoch\tExplore_Iteration\tMacroPopSize\tMicroPopSize\tAccuracy_Estimate\tRuleCount\tTreeCount\tAveGenerality\tExpRules\tTime(min)\n")
except IOError as xxx_todo_changeme1:
(errno, strerror) = xxx_todo_changeme1.args
print(("I/O error(%s): %s" % (errno, strerror)))
raise
# Instantiate Population---------
self.population = ClassifierSet()
self.exploreIter = 0
self.correct = [0.0 for i in range(cons.trackingFrequency)]
self.predictionList = [] #For outputting raw testing predictions
self.realList = []
self.predictionSets = []
def runExSTraCS(self):
""" Runs the initialized ExSTraCS algorithm. """
print("Beginning ExSTraCS learning iterations.")
print("------------------------------------------------------------------------------------------------------------------------------------------------------")
#START GP INTEGRATION CODE*************************************************************************************************************************************
#-------------------------------------------------------
# Initial round of rule population initialization
#-------------------------------------------------------
cons.env.startEvaluationMode()
initRuleCount = int((1-cons.popInitGP) * cons.N)
print('Initializing population with '+str(initRuleCount)+' LCS rules.')
if cons.trainFile != 'None':
if cons.env.formatData.discretePhenotype:
instances = cons.env.formatData.numTrainInstances
for i in range(initRuleCount):
if i % instances == 0:
cons.env.resetDataRef(True) # Go to the first instance in dataset
state_phenotype = cons.env.getTrainInstance()
self.population.addClassifierForInit(state_phenotype[0], state_phenotype[1])
cons.env.newInstance(True)
else: #ContinuousCode #########################
instances = cons.env.formatData.numTrainInstances
for i in range(initRuleCount):
if i % instances == 0:
cons.env.resetDataRef(True) # Go to the first instance in dataset
state_phenotype = cons.env.getTrainInstance()
self.population.addClassifierForInit(state_phenotype[0], state_phenotype[1])
cons.env.newInstance(True)
else: #Online Environment
raise NameError("Online has not been implemented")
cons.env.stopEvaluationMode()
#STOP GP INTEGRATION CODE*************************************************************************************************************************************
#-------------------------------------------------------
# MAJOR LEARNING LOOP
#-------------------------------------------------------
while self.exploreIter < cons.maxLearningIterations and not cons.stop: #Major Learning Loop
#print 'learning iteration = '+str(self.exploreIter)
#-------------------------------------------------------
# GET NEW INSTANCE AND RUN A LEARNING ITERATION
#-------------------------------------------------------
state_phenotype = cons.env.getTrainInstance()
self.runIteration(state_phenotype)
#-------------------------------------------------------------------------------------------------------------------------------
# EVALUATIONS OF ALGORITHM
#-------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeEvaluation()
#-------------------------------------------------------
# TRACK LEARNING ESTIMATES
#-------------------------------------------------------
#Learning Tracking----------------------------------------------------------------------------------------------------------------------------------------
if (self.exploreIter%cons.trackingFrequency) == (cons.trackingFrequency - 1) and self.exploreIter > 0:
self.population.runPopAveEval(self.exploreIter)
trackedAccuracy = sum(self.correct)/float(cons.trackingFrequency) #Accuracy over the last "trackingFrequency" number of iterations.
self.learnTrackOut.write(self.population.getPopTrack(trackedAccuracy, self.exploreIter+1,cons.trackingFrequency)) #Report learning progress to standard out and tracking file.
for observer in cons.epochCallbacks:
observer(self.exploreIter, self.population, trackedAccuracy)
cons.timer.stopTimeEvaluation()
#-------------------------------------------------------
# CHECKPOINT - COMPLETE EVALUTATION OF POPULATION - Evaluation strategy different for discrete vs continuous phenotypes
#-------------------------------------------------------
if (self.exploreIter + 1) in cons.learningCheckpoints or cons.forceCheckpoint:
if(cons.forceCheckpoint):
cons.forceCheckpoint = False
cons.timer.startTimeEvaluation()
print("------------------------------------------------------------------------------------------------------------------------------------------------------")
print("Running Population Evaluation after " + str(self.exploreIter + 1)+ " iterations.")
self.population.runPopAveEval(self.exploreIter)
self.population.runAttGeneralitySum()
cons.env.startEvaluationMode()
if cons.testFile != 'None': #If a testing file is available.
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = self.doPopEvaluation(False)
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = self.doContPopEvaluation(False)
elif cons.trainFile != 'None':
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = None
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = None
else: #Online Environment
trainEval = None
testEval = None
cons.env.stopEvaluationMode() #Returns to learning position in training data
cons.timer.stopTimeEvaluation()
#-----------------------------------------------------------------------------------------------------------------------------------------
# WRITE OUTPUT FILES
#-----------------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeOutFile()
OutputFileManager().writePopStats(cons.outFileName, trainEval, testEval, self.exploreIter + 1, self.population, self.correct)
OutputFileManager().writePop(cons.outFileName, self.exploreIter + 1, self.population)
OutputFileManager().attCo_Occurence(cons.outFileName, self.exploreIter + 1, self.population)
OutputFileManager().save_tracking(self.exploreIter, cons.outFileName)
OutputFileManager().writePredictions(self.exploreIter, cons.outFileName, self.predictionList, self.realList, self.predictionSets)
cons.timer.stopTimeOutFile()
if self.exploreIter + 1 == cons.maxLearningIterations:
FitnessLandscape(self.population)
#if self.exploreIter + 1 == cons.maxLearningIterations:
#plotPopulation(self.population, self.exploreIter)
#GUI ONLY--------------------------------
for observer in cons.checkpointCallbacks:
observer(trainEval, testEval)
#----------------------------------------
print("Continue Learning...")
print("------------------------------------------------------------------------------------------------------------------------------------------------------")
#-----------------------------------------------------------------------------------------------------------------------------------------
# RULE COMPACTION
#-----------------------------------------------------------------------------------------------------------------------------------------
if self.exploreIter + 1 == cons.maxLearningIterations and cons.doRuleCompaction:
cons.timer.startTimeRuleCmp()
if testEval == None:
RuleCompaction(self.population, trainEval[0], None, self.exploreIter)
else:
RuleCompaction(self.population, trainEval[0], testEval[0], self.exploreIter)
cons.timer.stopTimeRuleCmp()
#-----------------------------------------------------------------------------------------------------------------------------------------
# GLOBAL EVALUATION OF COMPACTED RULE POPULATION
#-----------------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeEvaluation()
self.population.recalculateNumerositySum()
self.population.runPopAveEval(self.exploreIter)
self.population.runAttGeneralitySum()
#----------------------------------------------------------
cons.env.startEvaluationMode()
if cons.testFile != 'None': #If a testing file is available.
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = self.doPopEvaluation(False)
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = self.doContPopEvaluation(False)
else:
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = None
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = None
cons.env.stopEvaluationMode()
cons.timer.stopTimeEvaluation()
#-----------------------------------------------------------------------------------------------------------------------------------------
# WRITE OUTPUT FILES
#-----------------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeOutFile()
OutputFileManager().writePopStats(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, trainEval, testEval, self.exploreIter + 1, self.population, self.correct)
OutputFileManager().writePop(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.exploreIter + 1, self.population)
OutputFileManager().attCo_Occurence(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.exploreIter + 1, self.population)
OutputFileManager().writePredictions(self.exploreIter, cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.predictionList, self.realList, self.predictionSets)
cons.timer.stopTimeOutFile()
#GUI ONLY--------------------------------
for observer in cons.iterationCallbacks:
observer()
#-------------------------------------------------------
# ADJUST MAJOR VALUES FOR NEXT ITERATION
#-------------------------------------------------------
self.exploreIter += 1
cons.env.newInstance(True) #move to next instance in training set
try: # Once ExSTraCS has reached the last learning iteration, close the tracking file
self.learnTrackOut.close()
except IOError as xxx_todo_changeme2:
(errno, strerror) = xxx_todo_changeme2.args
print(("I/O error(%s): %s" % (errno, strerror)))
raise
print("ExSTraCS Run Complete")
def runIteration(self, state_phenotype):
""" Run single ExSTraCS learning iteration. """
#-----------------------------------------------------------------------------------------------------------------------------------------
# FORM A MATCH SET - includes covering
#-----------------------------------------------------------------------------------------------------------------------------------------
self.population.makeMatchSet(state_phenotype, self.exploreIter)
cons.timer.startTimeEvaluation()
#-----------------------------------------------------------------------------------------------------------------------------------------
# MAKE A PREDICTION - Utilized here for tracking estimated learning progress. Typically used in the explore phase of many LCS algorithms.
#-----------------------------------------------------------------------------------------------------------------------------------------
prediction = Prediction(self.population, self.exploreIter)
phenotypePrediction = prediction.getDecision()
#-------------------------------------------------------
# PREDICTION NOT POSSIBLE
#-------------------------------------------------------
if phenotypePrediction == None or phenotypePrediction == 'Tie':
if cons.env.formatData.discretePhenotype:
phenotypePrediction = random.choice(cons.env.formatData.phenotypeList)
else: #ContinuousCode #########################
phenotypePrediction = random.uniform(cons.env.formatData.phenotypeList[0],cons.env.formatData.phenotypeList[1])
else:
#-------------------------------------------------------
# DISCRETE PHENOTYPE PREDICTION
#-------------------------------------------------------
if cons.env.formatData.discretePhenotype:
if phenotypePrediction == state_phenotype[1]:
self.correct[self.exploreIter%cons.trackingFrequency] = 1
else:
self.correct[self.exploreIter%cons.trackingFrequency] = 0
else: #ContinuousCode #########################
#-------------------------------------------------------
# CONTINUOUS PHENOTYPE PREDICTION
#-------------------------------------------------------
predictionError = math.fabs(phenotypePrediction - float(state_phenotype[1]))
phenotypeRange = cons.env.formatData.phenotypeList[1] - cons.env.formatData.phenotypeList[0]
accuracyEstimate = 1.0 - (predictionError / float(phenotypeRange))
self.correct[self.exploreIter%cons.trackingFrequency] = accuracyEstimate
cons.timer.stopTimeEvaluation()
#-----------------------------------------------------------------------------------------------------------------------------------------
# FORM A CORRECT SET
#-----------------------------------------------------------------------------------------------------------------------------------------
self.population.makeCorrectSet(state_phenotype[1])
#-----------------------------------------------------------------------------------------------------------------------------------------
# UPDATE PARAMETERS
#-----------------------------------------------------------------------------------------------------------------------------------------
self.population.updateSets(self.exploreIter, state_phenotype[1])
#-----------------------------------------------------------------------------------------------------------------------------------------
# SUBSUMPTION - APPLIED TO CORRECT SET - A heuristic for addition additional generalization pressure to ExSTraCS
#-----------------------------------------------------------------------------------------------------------------------------------------
if cons.doSubsumption:
cons.timer.startTimeSubsumption()
self.population.doCorrectSetSubsumption()
cons.timer.stopTimeSubsumption()
#-----------------------------------------------------------------------------------------------------------------------------------------
# ATTRIBUTE TRACKING AND FEEDBACK - A long-term memory mechanism tracked for each instance in the dataset and used to help guide the GA
#-----------------------------------------------------------------------------------------------------------------------------------------
if cons.doAttributeTracking:
cons.timer.startTimeAT()
cons.AT.updateAttTrack(self.population)
if cons.doAttributeFeedback:
cons.AT.updatePercent(self.exploreIter)
cons.AT.genTrackProb()
cons.timer.stopTimeAT()
#-----------------------------------------------------------------------------------------------------------------------------------------
# RUN THE GENETIC ALGORITHM - Discover new offspring rules from a selected pair of parents
#-----------------------------------------------------------------------------------------------------------------------------------------
self.population.runGA(self.exploreIter, state_phenotype[0], state_phenotype[1]) #GA is run within the correct set.
#-----------------------------------------------------------------------------------------------------------------------------------------
# SELECT RULES FOR DELETION - This is done whenever there are more rules in the population than 'N', the maximum population size.
#-----------------------------------------------------------------------------------------------------------------------------------------
self.population.deletion(self.exploreIter)
self.population.clearSets() #Clears the match and correct sets for the next learning iteration
def doPopEvaluation(self, isTrain):
""" Performs a complete evaluation of the current rule population. Discrete phenotype only. The population is unchanged throughout this evaluation. Works on both training and testing data. """
if isTrain:
myType = "TRAINING"
else:
myType = "TESTING"
noMatch = 0 # How often does the population fail to have a classifier that matches an instance in the data.
tie = 0 # How often can the algorithm not make a decision between classes due to a tie.
cons.env.resetDataRef(isTrain) # Go to the first instance in dataset
phenotypeList = cons.env.formatData.phenotypeList
#Initialize dictionary entry for each class----
classAccDict = {}
for each in phenotypeList:
classAccDict[each] = ClassAccuracy()
#----------------------------------------------
if isTrain:
instances = cons.env.formatData.numTrainInstances
else:
instances = cons.env.formatData.numTestInstances
self.predictionList = []
self.predictionSets = []
self.realList = []
#-----------------------------------------------------------------------------------------------------------------------------------------
# GET PREDICTION AND DETERMINE PREDICTION STATUS
#-----------------------------------------------------------------------------------------------------------------------------------------
for inst in range(instances):
if isTrain:
state_phenotype = cons.env.getTrainInstance()
else:
state_phenotype = cons.env.getTestInstance()
#-----------------------------------------------------------------------------
self.population.makeEvalMatchSet(state_phenotype[0])
prediction = Prediction(self.population, self.exploreIter)
phenotypeSelection = prediction.getDecision()
if not isTrain:
phenotypeSet = prediction.getSet()
self.predictionList.append(phenotypeSelection) #Used to output raw test predictions.
self.predictionSets.append(phenotypeSet)
self.realList.append(state_phenotype[1])
#-----------------------------------------------------------------------------
if phenotypeSelection == None:
noMatch += 1
elif phenotypeSelection == 'Tie':
tie += 1
else: #Instances which failed to be covered are excluded from the initial accuracy calculation
for each in phenotypeList:
thisIsMe = False
accuratePhenotype = False
truePhenotype = state_phenotype[1]
if each == truePhenotype:
thisIsMe = True #Is the current phenotype the true data phenotype.
if phenotypeSelection == truePhenotype:
accuratePhenotype = True
classAccDict[each].updateAccuracy(thisIsMe, accuratePhenotype)
cons.env.newInstance(isTrain) #next instance
self.population.clearSets()
#-----------------------------------------------------------------------------------------------------------------------------------------
# CALCULATE ACCURACY - UNLIKELY SITUATION WHERE NO MATCHING RULES FOUND - In either Training or Testing data (this can happen in testing data when strong training overfitting occurred)
#-----------------------------------------------------------------------------------------------------------------------------------------
if noMatch == instances:
randomProb = float (1.0 / len(cons.env.formatData.phenotypeList))
print("-----------------------------------------------")
print(str(myType)+" Accuracy Results:-------------")
print("Instance Coverage = "+ str(0)+ '%')
print("Prediction Ties = "+ str(0)+ '%')
print(str(0) + ' out of ' + str(instances) + ' instances covered and correctly classified.')
print("Standard Accuracy (Adjusted) = " + str(randomProb))
print("Balanced Accuracy (Adjusted) = " + str(randomProb))
#Balanced and Standard Accuracies will only be the same when there are equal instances representative of each phenotype AND there is 100% covering. (NOTE even at 100% covering, the values may differ due to subtle float calculation differences in the computer)
resultList = [randomProb, 0]
return resultList
#-----------------------------------------------------------------------------------------------------------------------------------------
# CALCULATE ACCURACY
#-----------------------------------------------------------------------------------------------------------------------------------------
else:
#----------------------------------------------------------------------------------------------
#Calculate Standard Accuracy------------------------------------
standardAccuracy = 0
for each in phenotypeList:
instancesCorrectlyClassified = classAccDict[each].T_myClass + classAccDict[each].T_otherClass
instancesIncorrectlyClassified = classAccDict[each].F_myClass + classAccDict[each].F_otherClass
classAccuracy = float(instancesCorrectlyClassified) / float(instancesCorrectlyClassified + instancesIncorrectlyClassified)
standardAccuracy += classAccuracy
standardAccuracy = standardAccuracy / float(len(phenotypeList))
#Calculate Balanced Accuracy---------------------------------------------
balancedAccuracy = 0
for each in phenotypeList:
try:
sensitivity = classAccDict[each].T_myClass / (float(classAccDict[each].T_myClass + classAccDict[each].F_otherClass))
except:
sensitivity = 0.0
try:
specificity = classAccDict[each].T_otherClass / (float(classAccDict[each].T_otherClass + classAccDict[each].F_myClass))
except:
specificity = 0.0
balancedClassAccuracy = (sensitivity + specificity) / 2.0
balancedAccuracy += balancedClassAccuracy
balancedAccuracy = balancedAccuracy / float(len(phenotypeList))
#Adjustment for uncovered instances - to avoid positive or negative bias we incorporate the probability of guessing a phenotype by chance (e.g. 50% if two phenotypes)---------------------------------------
predictionFail = float(noMatch)/float(instances)
predictionTies = float(tie)/float(instances)
instanceCoverage = 1.0 - predictionFail
predictionMade = 1.0 - (predictionFail + predictionTies)
adjustedStandardAccuracy = (standardAccuracy * predictionMade) + ((1.0 - predictionMade) * (1.0 / float(len(phenotypeList))))
adjustedBalancedAccuracy = (balancedAccuracy * predictionMade) + ((1.0 - predictionMade) * (1.0 / float(len(phenotypeList))))
#Adjusted Balanced Accuracy is calculated such that instances that did not match have a consistent probability of being correctly classified in the reported accuracy.
print("-----------------------------------------------")
print(str(myType)+" Accuracy Results:-------------")
print("Instance Coverage = "+ str(instanceCoverage*100.0)+ '%')
print("Prediction Ties = "+ str(predictionTies*100.0)+ '%')
print(str(instancesCorrectlyClassified) + ' out of ' + str(instances) + ' instances covered and correctly classified.')
print("Standard Accuracy (Adjusted) = " + str(adjustedStandardAccuracy))
print("Balanced Accuracy (Adjusted) = " + str(adjustedBalancedAccuracy))
#Balanced and Standard Accuracies will only be the same when there are equal instances representative of each phenotype AND there is 100% covering. (NOTE even at 100% covering, the values may differ due to subtle float calculation differences in the computer)
resultList = [adjustedBalancedAccuracy, instanceCoverage]
return resultList
#ContinuousCode #########################
def doContPopEvaluation(self, isTrain):
""" Performs a complete evaluation of the current rule population. Continuous phenotype only. The population is unchanged throughout this evaluation. Works on both training and testing data. """
if isTrain:
myType = "TRAINING"
else:
myType = "TESTING"
noMatch = 0 # How often does the population fail to have a classifier that matches an instance in the data.
cons.env.resetDataRef(isTrain) # Go to the first instance in dataset
accuracyEstimateSum = 0
if isTrain:
instances = cons.env.formatData.numTrainInstances
else:
instances = cons.env.formatData.numTestInstances
self.predictionList = []
self.predictionSets = []
self.realList = []
#-----------------------------------------------------------------------------------------------------------------------------------------
# GET PREDICTION AND DETERMINE PREDICTION ERROR
#-----------------------------------------------------------------------------------------------------------------------------------------
for inst in range(instances):
if isTrain:
state_phenotype = cons.env.getTrainInstance()
else:
state_phenotype = cons.env.getTestInstance()
#-----------------------------------------------------------------------------
self.population.makeEvalMatchSet(state_phenotype[0])
prediction = Prediction(self.population, self.exploreIter)
phenotypePrediction = prediction.getDecision()
if not isTrain:
#phenotypeSet = prediction.getSet()
self.predictionList.append(phenotypePrediction) #Used to output raw test predictions.
#self.predictionSets.append(phenotypeSet)
self.realList.append(state_phenotype[1])
#-----------------------------------------------------------------------------
if phenotypePrediction == None or phenotypePrediction == 'Tie':
noMatch += 1
else: #Instances which failed to be covered are excluded from the initial accuracy calculation
predictionError = math.fabs(float(phenotypePrediction) - float(state_phenotype[1]))
phenotypeRange = cons.env.formatData.phenotypeList[1] - cons.env.formatData.phenotypeList[0]
accuracyEstimateSum += 1.0 - (predictionError / float(phenotypeRange))
cons.env.newInstance(isTrain) #next instance
self.population.clearSets()
#----------------------------------------------------------------------------------------------
#Accuracy Estimate
if instances == noMatch:
accuracyEstimate = 0
else:
accuracyEstimate = accuracyEstimateSum / float(instances - noMatch)
#Adjustment for uncovered instances - to avoid positive or negative bias we incorporate the probability of guessing a phenotype by chance (e.g. 50% if two phenotypes)---------------------------------------
instanceCoverage = 1.0 - (float(noMatch)/float(instances))
adjustedAccuracyEstimate = (accuracyEstimate * instanceCoverage) + ((1.0 - instanceCoverage) * (1.0 / 3.0)) #1/3 is expected random error within range 0 to 1 with uniform selection.
print("-----------------------------------------------")
print(str(myType)+" Accuracy Results:-------------")
print("Instance Coverage = "+ str(instanceCoverage*100.0)+ '%')
print("Estimated Prediction Accuracy (Ignore uncovered) = " + str(accuracyEstimate))
print("Estimated Prediction Accuracy (Penalty uncovered) = " + str(adjustedAccuracyEstimate))
#Balanced and Standard Accuracies will only be the same when there are equal instances representative of each phenotype AND there is 100% covering. (NOTE even at 100% covering, the values may differ due to subtle float calculation differences in the computer)
resultList = [adjustedAccuracyEstimate, instanceCoverage]
return resultList
def populationReboot(self):
""" Manages the loading and continued learning/evolution of a previously saved ExSTraCS classifier population. """
cons.timer.setTimerRestart(cons.popRebootPath) #Rebuild timer objects
#Extract last iteration from file name---------------------------------------------
temp = cons.popRebootPath.split('_')
iterRef = len(temp)-1
completedIterations = int(temp[iterRef])
print("Rebooting rule population after " +str(completedIterations)+ " iterations.")
self.exploreIter = completedIterations-1
for i in range(len(cons.learningCheckpoints)):
cons.learningCheckpoints[i] += completedIterations
cons.maxLearningIterations += completedIterations
#Rebuild existing population from text file.--------
self.population = ClassifierSet(cons.popRebootPath)
#---------------------------------------------------
try: #Obtain correct track
f = open(cons.popRebootPath+"_PopStats.txt", 'rU')
correctRef = 39 #Reference for tracking learning accuracy estimate stored in PopStats.
tempLine = None
for i in range(correctRef):
tempLine = f.readline()
tempList = tempLine.strip().split('\t')
self.correct = tempList
if cons.env.formatData.discretePhenotype:
for i in range(len(self.correct)):
self.correct[i] = int(self.correct[i])
else:
for i in range(len(self.correct)):
self.correct[i] = float(self.correct[i])
# #Handles saved max and min state frequencies
# tempLine = f.readline()
# tempLine = f.readline()
# tempList = tempLine.strip().split('\t')
# i = 0
# for each in tempList:
# cons.env.formatData.maxFreq[i] = float(each)
# i += 1
# tempLine = f.readline()
# tempList = tempLine.strip().split('\t')
# i = 0
# for each in tempList:
# cons.env.formatData.minFreq[i] = float(each)
# i += 1
#Handles saved maxCoverDiff
tempLine = f.readline()
tempLine = f.readline()
tempList = tempLine.strip().split('\t')
# cons.env.formatData.bestCoverDiff[0] = float(tempList[0])
# cons.env.formatData.bestCoverDiff[1] = float(tempList[1])
# cons.env.formatData.bestCoverDiff[2] = int(tempList[2])
# cons.env.formatData.bestCoverDiff[3] = bool(tempList[3])
# for i in range(0,len(cons.env.formatData.phenotypeList)):
# tempLine = f.readline()
# tempList = tempLine.strip().split('\t')
# cons.env.formatData.bestCoverDiff[tempList[0]][0] = float(tempList[1])
# cons.env.formatData.bestCoverDiff[tempList[0]][1] = float(tempList[2])
# cons.env.formatData.bestCoverDiff[tempList[0]][2] = int(tempList[3])
# cons.env.formatData.bestCoverDiff[tempList[0]][3] = bool(tempList[4])
#Global Epoch Status
# tempLine = f.readline()
# tempLine = f.readline()
# tempLine = f.readline()
# tempList = tempLine.strip().split('\t')
cons.firstEpochComplete = bool(tempList[0])
tempLine = f.readline()
tempLine = f.readline()
tempLine = f.readline()
tempListA = tempLine.strip().split('\t')
tempLine = f.readline()
tempListB = tempLine.strip().split('\t')
cons.env.formatData.necFront.rebootPareto(tempListA, tempListB)
tempLine = f.readline()
tempLine = f.readline()
tempListA = tempLine.strip().split('\t')
tempLine = f.readline()
tempListB = tempLine.strip().split('\t')
cons.env.formatData.ecFront.rebootPareto(tempListA, tempListB)
f.close()
except IOError as xxx_todo_changeme3:
(errno, strerror) = xxx_todo_changeme3.args
print(("I/O error(%s): %s" % (errno, strerror)))
raise
def runRConly(self):
""" Run rule compaction on an existing rule population. """
print("Initializing Rule Compaction...")
#-----------------------------------------------------------------------------------------------------------------------------------------
# CHECK FOR POPULATION REBOOT - Required for running Rule Compaction only on an existing saved rule population.
#-----------------------------------------------------------------------------------------------------------------------------------------
if not cons.doPopulationReboot:
print("Algorithm: Error - Existing population required to run rule compaction alone.")
return
try:
fileObject = open(cons.popRebootPath+"_PopStats.txt", 'rU') # opens each datafile to read.
except:
#break
print("Data-set Not Found!")
#Retrieve last training and testing accuracies from saved file---------
tempLine = None
for i in range(3):
tempLine = fileObject.readline()
tempList = tempLine.strip().split('\t')
trainAcc = float(tempList[0])
if cons.testFile != 'None': #If a testing file is available.
testAcc = float(tempList[1])
else:
testAcc = None
#-----------------------------------------------------------------------------------------------------------------------------------------
# RULE COMPACTION
#-----------------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeRuleCmp()
RuleCompaction(self.population, trainAcc, testAcc, self.exploreIter)
cons.timer.stopTimeRuleCmp()
#-----------------------------------------------------------------------------------------------------------------------------------------
# GLOBAL EVALUATION OF COMPACTED RULE POPULATION
#-----------------------------------------------------------------------------------------------------------------------------------------
cons.timer.startTimeEvaluation()
self.population.recalculateNumerositySum()
self.population.runPopAveEval(self.exploreIter)
self.population.runAttGeneralitySum()
#----------------------------------------------------------
cons.env.startEvaluationMode()
if cons.testFile != 'None': #If a testing file is available.
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = self.doPopEvaluation(False)
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = self.doContPopEvaluation(False)
elif cons.trainFile != 'None':
if cons.env.formatData.discretePhenotype:
trainEval = self.doPopEvaluation(True)
testEval = None
else: #ContinuousCode #########################
trainEval = self.doContPopEvaluation(True)
testEval = None
else: #Online Environment
trainEval = None
testEval = None
cons.env.stopEvaluationMode()
cons.timer.stopTimeEvaluation()
#------------------------------------------------------------------------------
cons.timer.returnGlobalTimer()
#-----------------------------------------------------------------------------------------------------------------------------------------
# WRITE OUTPUT FILES
#-----------------------------------------------------------------------------------------------------------------------------------------
OutputFileManager().writePopStats(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, trainEval, testEval, self.exploreIter + 1, self.population, self.correct)
OutputFileManager().writePop(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.exploreIter + 1, self.population)
OutputFileManager().attCo_Occurence(cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.exploreIter + 1, self.population)
OutputFileManager().writePredictions(self.exploreIter, cons.outFileName+"_RC_"+cons.ruleCompactionMethod, self.predictionList, self.realList, self.predictionSets)
#------------------------------------------------------------------------------------------------------------
print("Rule Compaction Complete")
def runTestonly(self):
""" Run testing dataset evaluation on an existing rule population. """
print("Initializing Evaluation of Testing Dataset...")
#-----------------------------------------------------------------------------------------------------------------------------------------
# CHECK FOR POPULATION REBOOT - Required for running Testing Evaluation only on an existing saved rule population.
#-----------------------------------------------------------------------------------------------------------------------------------------
if not cons.doPopulationReboot:
print("Algorithm: Error - Existing population required to run rule compaction alone.")
return
#----------------------------------------------------------
cons.env.startEvaluationMode()
if cons.testFile != 'None': #If a testing file is available.
if cons.env.formatData.discretePhenotype:
testEval = self.doPopEvaluation(False)
else:
testEval = self.doContPopEvaluation(False)
else: #Online Environment
testEval = None
cons.env.stopEvaluationMode()
cons.timer.stopTimeEvaluation()
#------------------------------------------------------------------------------
cons.timer.returnGlobalTimer()
OutputFileManager().editPopStats(testEval)
OutputFileManager().writePredictions(self.exploreIter, cons.outFileName, self.predictionList, self.realList, self.predictionSets)
print("Testing Evaluation Complete")