-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexstracs_pareto.py
846 lines (773 loc) · 44.8 KB
/
exstracs_pareto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
"""
Name: ExSTraCS_Pareto.py
Authors: Ryan Urbanowicz - Written at Dartmouth College, Hanover, NH, USA
Contact: ryan.j.urbanowicz@darmouth.edu
Created: May 15, 2015
Modified: May 15, 2015
Description: This module defines an individual Pareto front which defines the current best multiobjective fitness boundary used in the determination
of rule fitness.
---------------------------------------------------------------------------------------------------------------------------------------------------------
ExSTraCS V2.0: Extended Supervised Tracking and Classifying System - An advanced LCS designed specifically for complex, noisy classification/data mining tasks,
such as biomedical/bioinformatics/epidemiological problem domains. This algorithm should be well suited to any supervised learning problem involving
classification, prediction, data mining, and knowledge discovery. This algorithm would NOT be suited to function approximation, behavioral modeling,
or other multi-step problems. This LCS algorithm is most closely based on the "UCS" algorithm, an LCS introduced by Ester Bernado-Mansilla and
Josep Garrell-Guiu (2003) which in turn is based heavily on "XCS", an LCS introduced by Stewart Wilson (1995).
Copyright (C) 2014 Ryan Urbanowicz
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABLILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
---------------------------------------------------------------------------------------------------------------------------------------------------------
"""
import copy
import math
class Pareto:
def __init__(self): #def __init__(self, EClass, Epoch):
#Definte the parts of the Pareto Front
self.paretoFrontAcc = []
self.paretoFrontRawCov = [] #will store the actual cover values
self.coverMax = 0.0
self.accuracyMax = 0.0
#After updateing front calculate ans save AOC
#Change pareto fitness calculator to calculate area under cerve
def rebootPareto(self, frontAcc, frontRawCov):
""" Reinitializes pareto front from loaded run. """
#Reboot Accuracy
for i in range(len(frontAcc)):
self.paretoFrontAcc.append(float(frontAcc[i]))
self.accuracyMax = self.paretoFrontAcc[-1]
#Reboot Coverage
for i in range(len(frontRawCov)):
self.paretoFrontRawCov.append(float(frontRawCov[i]))
self.coverMax = self.paretoFrontRawCov[0]
def updateFront(self, objectivePair):
""" Handles process of checking and adjusting the fitness pareto front. """
#Update any changes to the maximum Cov - automatically adds point if new cov max is found
#print self.classID + ' ' + self.epochID + '-------------------------------------'
#print objectivePair
changedFront = False
if len(self.paretoFrontAcc) == 0:
#print "first point addition"
self.accuracyMax = objectivePair[0]
self.paretoFrontAcc.append(objectivePair[0])
self.coverMax = objectivePair[1]
self.paretoFrontRawCov.append(objectivePair[1])
changedFront = True
elif len(self.paretoFrontAcc) == 1:
#print "second point addition"
if objectivePair[1] > self.coverMax:
#print 'A'
self.coverMax = objectivePair[1]
if objectivePair[0] > self.accuracyMax:
#print '1*'
#Replace Point
self.accuracyMax = objectivePair[0]
self.paretoFrontAcc[0] = objectivePair[0]
self.paretoFrontRawCov[0] = objectivePair[1]
changedFront = True
else:
#Add point
self.paretoFrontAcc.insert(0,objectivePair[0])
self.paretoFrontRawCov.insert(0,objectivePair[1])
changedFront = True
else:
#print 'B'
if objectivePair[0] > self.accuracyMax:
self.accuracyMax = objectivePair[0]
#print '1*'
self.paretoFrontAcc.append(objectivePair[0])
self.paretoFrontRawCov.append(objectivePair[1])
changedFront = True
else:
pass
else: #Automated check and adjust when there are 2 or more points already on the front.
#print "LARGER POINT ADDITION"
oldParetoFrontRawCov = copy.deepcopy(self.paretoFrontRawCov)
oldParetoFrontAcc = copy.deepcopy(self.paretoFrontAcc)
self.paretoFrontAcc.append(objectivePair[0])
self.paretoFrontRawCov.append(objectivePair[1])
front = self.pareto_frontier(self.paretoFrontRawCov, self.paretoFrontAcc)
#print front
self.paretoFrontRawCov = front[0]
self.paretoFrontAcc = front[1]
self.coverMax = max(self.paretoFrontRawCov)
self.accuracyMax = max(self.paretoFrontAcc)
if oldParetoFrontRawCov != self.paretoFrontRawCov or oldParetoFrontAcc != self.paretoFrontAcc:
changedFront = True
#print oldParetoFrontRawCov
#
# if changedFront:
# #self.AUC = self.PolygonArea(copy.deepcopy(self.paretoFrontAcc), copy.deepcopy(self.paretoFrontRawCov))
#
# #self.preFitMax = 0.0 #Reset because with new front, we can have a lower max (in particular 1 point fronts will have a max of 1.0 so otherwise we'd be stuck at 1.
# #Determine maximum AUC ratio (i.e. maximum prefitness)
# for i in range(len(self.paretoFrontAcc)):
# tempMaxAUC = self.paretoFrontAcc[i]*self.paretoFrontRawCov[i]
# #print tempMaxAUC
# if tempMaxAUC > self.maxAUC:
# self.maxAUC = tempMaxAUC
#tempParetoFitness = (self.paretoFrontAcc[i]*self.paretoFrontRawCov[i]/self.coverMax)/self.AUC
# tempParetoFitness = self.paretoFrontAcc[i]*self.paretoFrontRawCov[i]/self.AUC
# if tempParetoFitness > self.preFitMax:
# self.preFitMax = tempParetoFitness
#NOTE, the best prefitMax might not be on the front - so this should be checked even when rule not updated.!!!!!!!!!!NOT FIXED YET
self.verifyFront() #TEMPORARY - DEBUGGING
return changedFront
def PolygonArea(self, accList, covList):
#Shoelace Formula
accList.insert(0,0)
covList.insert(0,0)
accList.insert(1,0)
covList.insert(1,self.coverMax)
accList.append(self.accuracyMax)
covList.append(0)
#print accList
#print covList
n = len(covList) # of corners
area = 0.0
for i in range(n):
j = (i + 1) % n
area += accList[i] * covList[j]#/self.coverMax
area -= accList[j] * covList[i]#/self.coverMax
area = abs(area) / 2.0
#print area
return area
# accList.insert(0,0)
# covList.insert(0,0)
# accList.insert(1,0)
# covList.insert(1,self.coverMax)
# accList.append(self.accuracyMax)
# covList.append(0)
# #print accList
# #print covList
# n = len(covList) # of corners
# area = 0.0
# for i in range(n):
# j = (i + 1) % n
# area += accList[i] * covList[j]
# area -= accList[j] * covList[i]
# area = abs(area) / 2.0
# #print area
# return area
def verifyFront(self):
for i in range(len(self.paretoFrontAcc)-1):
if self.paretoFrontAcc[i] > self.paretoFrontAcc[i+1]:
print('ERROR: Accurcy error')
x = 5/0
if self.paretoFrontRawCov[i] < self.paretoFrontRawCov[i+1]:
print('ERROR: Cov error')
x = 5/0
def getParetoFitness(self, objectivePair):
""" Determines and returns the pareto fitness based on the proportional distance of a given point"""
objectiveCoverVal = objectivePair[1] / self.coverMax
#Special Case
i = 0#-1
foundPerp = False
badDist = None
while not foundPerp:
#print i
mainLineSlope = self.calcSlope(0, objectivePair[0], 0, objectiveCoverVal) #check that we are alwasys storing objective cover val, so there is no error here (recent thought)
if self.paretoFrontAcc[i] == objectivePair[0] and self.paretoFrontRawCov[i] == objectivePair[1]: #is point a point on front?
#print "POINT ON FRONT"
goodDist = 1
badDist = 0
foundPerp = True
else:
frontPointSlope = self.calcSlope(0, self.paretoFrontAcc[i], 0, self.paretoFrontRawCov[i]/self.coverMax)
if i == 0 and frontPointSlope >= mainLineSlope: #Special Case: High Coverage boundary case
foundPerp = True
if objectiveCoverVal >= self.paretoFrontRawCov[i]/self.coverMax: #Over front treated like maximum indfitness
if objectivePair[0] >= self.paretoFrontAcc[i]:
goodDist = 1
badDist = 0
else:
# goodDist = calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = calcDistance(0,paretoFrontAcc[i],0,paretoFrontRawCov[i]/coverMax) - goodDist
goodDist = self.calcDistance(0,objectivePair[0],0,1)
badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,1) - goodDist
# goodDist = objectivePair[0]
# badDist = paretoFrontAcc[i]-objectivePair[0]
# goodDist = calcDistance(0,objectivePair[0],paretoFrontRawCov[i]/coverMax,1)
# badDist = calcDistance(paretoFrontAcc[i],objectivePair[0],paretoFrontRawCov[i]/coverMax,1)
elif objectiveCoverVal == self.paretoFrontRawCov[i]/self.coverMax: #On the boundary Line but not a point on the front. - some more minor penalty.
goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
else: #Maximum penalty case - point is a boundary case underneath the front.
goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal)
goodDist += objectivePair[0]
badDist += self.paretoFrontAcc[i]-objectivePair[0]
elif i == len(self.paretoFrontAcc)-1 and frontPointSlope < mainLineSlope: #Special Case: High Accuracy boundary case
foundPerp = True
if objectivePair[0] > self.paretoFrontAcc[i]: #Over front treated like maximum indfitness
goodDist = 1
badDist = 0
elif objectivePair[0] == self.paretoFrontAcc[i]: #On the boundary Line but not a point on the front. - some more minor penalty.
if self.paretoFrontAcc[i] == 1.0:
goodDist = 1
badDist = 0
else:
goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
# if objectiveCoverVal >= self.paretoFrontRawCov[i]/self.coverMax:
# goodDist = 1
# badDist = 0
# else:
# goodDist = self.calcDistance(0,1,0,objectiveCoverVal)
# badDist = self.calcDistance(0,1,0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
# goodDist = objectiveCoverVal
# badDist = paretoFrontRawCov[i]/coverMax-objectiveCoverVal
# elif objectivePair[0] == self.paretoFrontAcc[i]: #On the boundary Line but not a point on the front. - some more minor penalty.
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
else: #Maximum penalty case - point is a boundary case underneath the front.
goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal)
goodDist += objectiveCoverVal
badDist += self.paretoFrontRawCov[i]/self.coverMax-objectiveCoverVal
elif frontPointSlope >= mainLineSlope: #Normal Middle front situation (we work from high point itself up to low point - but not including)
foundPerp = True
#boundaryCalculation Rule = (x1-x0)(y2-y0)-(x2-x0)(y1-y0), where 0 and 1 represent two points with a line, and 2 represents some other point.
boundaryCalculation = (self.paretoFrontAcc[i]-self.paretoFrontAcc[i-1])*(objectiveCoverVal-self.paretoFrontRawCov[i-1]/self.coverMax) - (objectivePair[0]-self.paretoFrontAcc[i-1])*(self.paretoFrontRawCov[i]/self.coverMax-self.paretoFrontRawCov[i-1]/self.coverMax)
if boundaryCalculation > 0:
goodDist = 1
badDist = 0
else:
frontIntercept = self.calcIntercept(self.paretoFrontAcc[i], self.paretoFrontAcc[i-1], self.paretoFrontRawCov[i]/self.coverMax, self.paretoFrontRawCov[i-1]/self.coverMax, mainLineSlope)
badDist = self.calcDistance(frontIntercept[0],objectivePair[0],frontIntercept[1],objectiveCoverVal)
goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
else:
i += 1
paretoFitness = goodDist / float(goodDist + badDist)
return paretoFitness
# def getParetoFitness(self, objectivePair):
# """ Determines and returns the pareto fitness based on the proportional distance of a given point"""
# objectiveCoverVal = objectivePair[1] / self.coverMax
# #Special Case
# i = 0#-1
# foundPerp = False
# badDist = None
# while not foundPerp:
# #print i
# mainLineSlope = self.calcSlope(0, objectivePair[0], 0, objectiveCoverVal) #check that we are alwasys storing objective cover val, so there is no error here (recent thought)
# if self.paretoFrontAcc[i] == objectivePair[0] and self.paretoFrontRawCov[i] == objectivePair[1]: #is point a point on front?
# #print "POINT ON FRONT"
# goodDist = 1
# badDist = 0
# foundPerp = True
# else:
# frontPointSlope = self.calcSlope(0, self.paretoFrontAcc[i], 0, self.paretoFrontRawCov[i]/self.coverMax)
# if i == 0 and frontPointSlope >= mainLineSlope: #Special Case: High Coverage boundary case
# foundPerp = True
# if objectiveCoverVal > self.paretoFrontRawCov[i]/self.coverMax: #Over front treated like maximum indfitness
# goodDist = 1
# badDist = 0
# elif objectiveCoverVal == self.paretoFrontRawCov[i]/self.coverMax: #On the boundary Line but not a point on the front. - some more minor penalty.
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
# else: #Maximum penalty case - point is a boundary case underneath the front.
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal)
#
# if i == len(self.paretoFrontAcc)-1 and frontPointSlope < mainLineSlope: #Special Case: High Accuracy boundary case
# foundPerp = True
# if objectivePair[0] > self.paretoFrontAcc[i]: #Over front treated like maximum indfitness
# goodDist = 1
# badDist = 0
# elif objectivePair[0] == self.paretoFrontAcc[i]: #On the boundary Line but not a point on the front. - some more minor penalty.
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(0,self.paretoFrontAcc[i],0,self.paretoFrontRawCov[i]/self.coverMax) - goodDist
# else: #Maximum penalty case - point is a boundary case underneath the front.
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal)
#
# elif frontPointSlope >= mainLineSlope: #Normal Middle front situation (we work from high point itself up to low point - but not including)
# frontIntercept = self.calcIntercept(self.paretoFrontAcc[i], self.paretoFrontAcc[i-1], self.paretoFrontRawCov[i]/self.coverMax, self.paretoFrontRawCov[i-1]/self.coverMax, mainLineSlope)
# foundPerp = True
# badDist = self.calcDistance(frontIntercept[0],objectivePair[0],frontIntercept[1],objectiveCoverVal)
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
#
# else:
# i += 1
#
# frontDistanceFitness = goodDist / float(goodDist + badDist)
# #paretoFitness = (areaFitness + frontDistanceFitness) / float(2)
#
# paretoFitness = frontDistanceFitness
#
# return paretoFitness
# print 'getting pareto'
# print 'AccFront= '+ str(self.paretoFrontAcc)
# print 'CovFront= '+str(self.paretoFrontRawCov) #will store the actual cover values
# print 'pointPair= '+ str(objectivePair)
# print 'ruleAUC= '+ str(ruleAUC)
# print 'self.AUC= '+str(self.AUC)
# print 'paretofit= '+str(paretoFitness)
# if paretoFitness > self.preFitMax:
# print 'set to max'
# print 'AccFront= '+ str(self.paretoFrontAcc)
# print 'CovFront= '+str(self.paretoFrontRawCov) #will store the actual cover values
# print 'pointPair= '+ str(objectivePair)
# print 'ruleAUC= '+ str(ruleAUC)
# print 'self.AUC= '+str(self.AUC)
# print 'paretoFitness= '+str(paretoFitness)
# print 'self.preFitMax= '+ str(self.preFitMax)
# paretoFitness = self.preFitMax
# #print paretoFitness
#
# if paretoFitness < .001:
# print 'pareto'
# print 'AccFront= '+ str(self.paretoFrontAcc)
# print 'CovFront= '+str(self.paretoFrontRawCov) #will store the actual cover values
# print 'pointPair= '+ str(objectivePair)
# print 'ruleAUC= '+ str(ruleAUC)
# print 'self.AUC= '+str(self.AUC)
# x = 5/0
# objectiveCoverVal = objectivePair[1] / self.coverMax
# #Special Case
# i = -1
# foundPerp = False
# badDist = None
# while not foundPerp:
# mainLineSlope = self.calcSlope(0, objectivePair[0], 0, objectiveCoverVal)
# if i == -1:
# if self.paretoFrontAcc[i] == 0: #Point is on boundary (thus we can treat this like a middle interval
# print 'bound'
# i += 1
# else:
# #print 'close bound'
# i += 1
# if self.paretoFrontAcc[i] == objectivePair[0] and self.paretoFrontRawCov[i] == objectivePair[1]:
# goodDist = 1
# badDist = 0
# foundPerp = True
# else:
#
# frontIntercept = self.calcIntercept(0, self.paretoFrontAcc[i], self.paretoFrontRawCov[i]/self.coverMax, self.paretoFrontRawCov[i]/self.coverMax, mainLineSlope) #Starts on right side of curve
# if frontIntercept[0] <= self.paretoFrontAcc[i]:
# foundPerp = True
# #theoryMaxDist = self.paretoFrontAcc[i]+self.paretoFrontRawCov[i]/self.coverMax
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal) #Handles being on or close to front with lower accuracy
# # theoryMaxDist = self.calcDistance(0, self.paretoFrontAcc[i], 0, self.paretoFrontRawCov[i]/self.coverMax)
# # goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# # badDist = theoryMaxDist - goodDist #Handles being on or close to front with lower accuracy
#
# elif i == len(self.paretoFrontAcc)-1: #Special Case
# if self.paretoFrontAcc[i] == objectivePair[0] and self.paretoFrontRawCov[i] == objectivePair[1]:
# goodDist = 1
# badDist = 0
# foundPerp = True
# else:
# #print 'close other bound'
# foundPerp = True
# #theoryMaxDist = self.paretoFrontAcc[i]+self.paretoFrontRawCov[i]/self.coverMax
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# badDist = self.calcDistance(self.paretoFrontAcc[i],objectivePair[0],self.paretoFrontRawCov[i]/self.coverMax, objectiveCoverVal)
#
# # theoryMaxDist = self.calcDistance(self.paretoFrontAcc[i], 0, self.paretoFrontRawCov[i]/self.coverMax, 0)
# # goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# # badDist = theoryMaxDist - goodDist #Handles being on or close to front with lower accuracy
#
# else: # Normal middle pair
# #print 'middle'
# if self.paretoFrontAcc[i] == objectivePair[0] and self.paretoFrontRawCov[i] == objectivePair[1]:
# goodDist = 1
# badDist = 0
# foundPerp = True
# else:
# frontIntercept = self.calcIntercept(self.paretoFrontAcc[i], self.paretoFrontAcc[i+1], self.paretoFrontRawCov[i]/self.coverMax, self.paretoFrontRawCov[i+1]/self.coverMax, mainLineSlope)
# #print frontIntercept
# if frontIntercept[0] >= self.paretoFrontAcc[i] and frontIntercept[0] <= self.paretoFrontAcc[i+1]:# and frontIntercept[1] <= self.paretoFrontCov[i] and frontIntercept[1] <= self.paretoFrontCov[i]:
# foundPerp = True
# badDist = self.calcDistance(frontIntercept[0],objectivePair[0],frontIntercept[1],objectiveCoverVal)
# goodDist = self.calcDistance(0,objectivePair[0],0,objectiveCoverVal)
# i += 1
#
# #print badDist
# #Calculate distance from point to minFit edge.
# #print i
#
# paretoFitness = goodDist / float(goodDist + badDist)
# if self.epochID == 'ENCFront':
# if paretoFitness > 1:
# paretoFitness = 1.0
#
# if paretoFitness > 1.0:
# print "NEW"
# print self.classID + ' ' + self.epochID + '-------------------------------------'
# print objectivePair
# print objectiveCoverVal
# print self.paretoFrontAcc
# print self.paretoFrontRawCov
# print i
# print self.calcIntercept(self.paretoFrontAcc[1], self.paretoFrontAcc[2], self.paretoFrontRawCov[1]/self.coverMax, self.paretoFrontRawCov[2]/self.coverMax, mainLineSlope)
# print frontIntercept
# print mainLineSlope
# print goodDist
# print badDist
# print goodDist+badDist
# print paretoFitness
# #print 'end'
# return paretoFitness
def calcDistance(self, y1, y2, x1, x2):
distance = math.sqrt(math.pow(x2-x1,2) + math.pow(y2-y1,2))
return distance
def calcIntercept(self, y1a, y2a, x1a, x2a, mainLineSlope):
""" Calculates the coordinates at which the two lines 'A' defined by points and 'B', defined by a point and slope, intersect """
slopeA = self.calcSlope(y1a, y2a, x1a, x2a)
slopeB = mainLineSlope
if slopeA == 0:
xIntercept = x1a
yIntercept = slopeB*xIntercept
else:
xIntercept = (y2a - slopeA*x2a) / float(slopeB-slopeA)
yIntercept = slopeB*xIntercept
return [yIntercept,xIntercept]
# slopeA = self.calcSlope(y1a, y2a, x1a, x2a)
# slopeB = mainLineSlope
# xIntercept = (slopeA*x1a - y1a) / float(slopeA - slopeB)
# yIntercept = slopeA*(xIntercept - x1a) + y1a
# return [yIntercept,xIntercept]
# def calcIntercept(self, y1a, y2a, x1a, x2a, y1b, x1b):
# """ Calculates the coordinates at which the two lines 'A' defined by points and 'B', defined by a point and slope, intersect """
# slopeA = self.calcSlope(y1a, y2a, x1a, x2a)
# slopeB = -1*slopeA
# xIntercept = (slopeA*x1a - slopeB*x1b + y1b - y1a) / float(slopeA - slopeB)
# yIntercept = slopeA*(xIntercept - x1a) + y1a
# return [yIntercept,xIntercept]
def calcSlope(self, y1, y2, x1, x2):
""" Calculate slope between two points """
if x2-x1 == 0:
slope = 0
else:
slope = (y2 - y1) / (x2 - x1)
return slope
def pareto_frontier(self, Xs, Ys, maxX = True, maxY = True):
""" Code obtained online: http://oco-carbon.com/metrics/find-pareto-frontiers-in-python/"""
myList = sorted([[Xs[i], Ys[i]] for i in range(len(Xs))], reverse=maxX)
#print myList
p_front = [myList[0]]
#print p_front
for pair in myList[1:]:
if maxY:
#if pair[1] >= p_front[-1][1]:
if pair[1] > p_front[-1][1]:
p_front.append(pair)
else:
#if pair[1] <= p_front[-1][1]:
if pair[1] < p_front[-1][1]:
p_front.append(pair)
#print p_front
p_frontX = [pair[0] for pair in p_front]
p_frontY = [pair[1] for pair in p_front]
return p_frontX, p_frontY
# def checkFront(self, objectivePair):
# """ Takes a new pair of accuracy and usefulCover values and checks to see if this pair adds to defining a better non-dominated front"""
# #Algorithm to check for non-dominated point
# nonDominated = False
# self.currRightRef = 0
# print self.paretoFrontAcc
# print objectivePair[0]
# while self.currRightRef < len(self.paretoFrontAcc) and objectivePair[0] <= self.paretoFrontAcc[self.currRightRef] : #if only one point, than currRightRef == 0
# # define lower bound accuracy of current pareto front
# self.currRightRef += 1
# print self.currRightRef
#
# if self.currRightRef == 0: #special case - Front boundary - accuracy (AUTO INSERT)
# print 'acc bound'
# if self.accuracyMax < objectivePair[0]: #Won't be true for the first point.
# self.accuracyMax = objectivePair[0]
# nonDominated = True
# self.paretoFrontAcc.insert(0,objectivePair[0])
# self.paretoFrontRawCov.insert(0,objectivePair[1])
# self.paretoFrontCov.insert(0, objectivePair[1]/float(self.coverMax))
# #self.adjustCoverList()
# print 'inserted new best acc'
#
# elif self.currRightRef > len(self.paretoFrontAcc)-1: #Special case - Front boundary -cover (AUTO INSERT)
# print 'cov bound'
# if self.coverMax < objectivePair[1]:
# self.coverMax = objectivePair[1]
# nonDominated = True
# self.paretoFrontRawCov.append(self.coverMax)
# self.paretoFrontCov.append(1.0)
# self.adjustCoverList()
# self.paretoFrontAcc.append(objectivePair[0])
#
# else: #Check to add a new point in the middle
# print 'middle'
# # i points to lower Acc point and i-1 points to higher acc point.
# frontSegmentSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], self.paretoFrontAcc[self.currRightRef], self.paretoFrontCov[self.currRightRef-1], self.paretoFrontCov[self.currRightRef])
# newSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], objectivePair[0], self.paretoFrontCov[self.currRightRef-1], objectivePair[1])
# #check slope to new point from
# if newSlope >= frontSegmentSlope:
# nonDominated = True
# self.paretoFrontAcc.insert(self.currRightRef,objectivePair[0])
# self.paretoFrontCov.insert(self.currRightRef,objectivePair[1]/float(self.coverMax))
# self.paretoFrontRawCov.insert(self.currRightRef, objectivePair[1])
# # currRightRef now points to new point
# print 'inserted on front'
# return nonDominated
#
#
# def adjustFront(self,objectivePair):
# """ Checks for and potentially removes dominated points from the paretoFront. """
# #algorithm to recalculate front based on new point (and possibly remove other points
# #Start from new point and go independently in both directions removing points that have wrong slope.
# #From new point to right
#
# #ReWRITE THIS PART assuming accuracy in order, just deleteany further entries that don't follow increaseing Cover trend!!!!!!!!!
# #PRobleM - THIS DOENS'T TAKE CONVEX SHAPE PRESERVATION INTO CONSIDERATION.
# #ALSO IN SINGLE POINT VERSION ABOVE, EROR CAN STILL OCCUR.
# # i = 0
# # while i < len(self.paretoFrontAcc)-1:
# # if self.paretoFrontRawCov[i] > self.paretoFrontRawCov[i+1]:
# # self.paretoFrontAcc.pop(i+1)
# # self.paretoFrontCov.pop(i+1)
# # self.paretoFrontRawCov.pop(i+1)
# # else:
# # i += 1
#
# i = self.currRightRef #now is the new point ref.
# while i < len(self.paretoFrontAcc)-2:
# print 'made it'
# #bigger slope is better
# firstSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i+1], self.paretoFrontCov[i], self.paretoFrontCov[i+1])
# secondSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i+2], self.paretoFrontCov[i], self.paretoFrontCov[i+2])
# print firstSlope
# print secondSlope
# deleted = False
# #if secondSlope >= firstSlope:
# if secondSlope <= firstSlope: # I was thinking of slope backwards in my head from the ordering of cover, when it was by accuracy (or does this switch??
# #Delete point
# print i
# self.paretoFrontAcc.pop(i+1)
# self.paretoFrontCov.pop(i+1)
# self.paretoFrontRawCov.pop(i+1)
# deleted = True
# if not deleted:
# i += 1
#
# i = self.currRightRef #now is the new point ref.
# while i > 1:
# #bigger slope is better
# firstSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i-1], self.paretoFrontCov[i], self.paretoFrontCov[i-1])
# secondSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i-2], self.paretoFrontCov[i], self.paretoFrontCov[i-2])
# deleted = False
# #if firstSlope >= secondSlope:
# if firstSlope <= secondSlope:
# #Delete point
# self.paretoFrontAcc.pop(i-1)
# self.paretoFrontCov.pop(i-1)
# self.paretoFrontRawCov.pop(i-1)
# deleted = True
# self.currRightRef -= 1
# i -= 1
# if not deleted:
# i -= 1
# if i == 1:
# if self.paretoFrontAcc[i] >= self.paretoFrontAcc[i-1]: #remove point
# self.paretoFrontAcc.pop(i-1)
# self.paretoFrontCov.pop(i-1)
# self.paretoFrontRawCov.pop(i-1)
#
# def adjustCoverList(self):
# for i in range(len(self.paretoFrontRawCov)-1):
# self.paretoFrontCov[i] = self.paretoFrontRawCov[i] / float(self.coverMax)
# def calcIntercept(self, y1a, y2a, x1a, x2a, y1b, y2b, x1b, x2b):
# """ Calculates the coordinates at which the two lines 'A' and 'B' intersect """
# slopeA = self.calcSlope(y1a, y2a, x1a, x2a)
# slopeB = self.calcSlope(y1b, y2b, x1b, x2b)
# xIntercept = (slopeA*x1a - slopeB*x1b + y1b - y1a) / float(slopeA - slopeB)
# yIntercept = slopeA*(xIntercept - x1a) + y1a
# return [yIntercept,xIntercept]
# def updateFront(self, objectivePair,currentCoverMax):
# """ Handles process of checking and adjusting the fitness pareto front. """
# #Update any changes to the maximum Cov
# if currentCoverMax > self.paretoFrontCov[len(self.paretoFrontCov)-1]:
# self.paretoFrontCov[len(self.paretoFrontCov)-1] = currentCoverMax
#
# if self.checkFront(objectivePair):
# self.adjustFront(objectivePair)
# print self.paretoFrontAcc
# print self.paretoFrontCov
#
#
# def checkFront(self, objectivePair):
# """ Takes a new pair of accuracy and usefulCover values and checks to see if this pair adds to defining a better non-dominated front"""
# #Algorithm to check for non-dominated point
# nonDominated = False
# self.currRightRef = 0
# while objectivePair[0] <= self.paretoFrontAcc[self.currRightRef]:
# # define lower bound accuracy of current pareto front
# self.currRightRef += 1
# # I points to lower Acc point and i-1 points to higher acc point.
# frontSegmentSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], self.paretoFrontAcc[self.currRightRef], self.paretoFrontCov[self.currRightRef-1], self.paretoFrontCov[self.currRightRef])
# newSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], objectivePair[0], self.paretoFrontCov[self.currRightRef-1], objectivePair[1])
# #check slope to new point from
# if newSlope >= frontSegmentSlope:
# nonDominated = True
# self.paretoFrontAcc.insert(self.currRightRef,objectivePair[0])
# self.paretoFrontCov.insert(self.currRightRef,objectivePair[1])
# # currRightRef now points to new point
# print 'inserted on front'
# return nonDominated
#
#
# def calcSlope(self, y1, y2, x1, x2):
# """ Calculate slope between two points """
## print y1
## print y2
## print x1
## print x2
# if x2-x1 == 0:
# slope = 0
# else:
# slope = (y2 - y1) / (x2 - x1)
# return slope
# def adjustFront(self,objectivePair):
# """ Checks for and potentially removes dominated points from the paretoFront. """
# #algorithm to recalculate front based on new point (and possibly remove other points
# #Start from new point and go independently in both directions removing points that have wrong slope.
# #From new point to right
# i = self.currRightRef #now is the new point ref.
# while i < len(self.paretoFrontAcc)-2:
# #bigger slope is better
# firstSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i+1], self.paretoFrontCov[i], self.paretoFrontCov[i+1])
# secondSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i+2], self.paretoFrontCov[i], self.paretoFrontCov[i+2])
# deleted = False
# if secondSlope >= firstSlope:
# #Delete point
# self.paretoFrontAcc.pop[i+1]
# self.paretoFrontCov.pop[i+1]
# deleted = True
# if not deleted:
# i += 1
#
# #From new point to left
# i = self.currRightRef #now is the new point ref.
# while i > 1:
# #bigger slope is better
# firstSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i-1], self.paretoFrontCov[i], self.paretoFrontCov[i-1])
# secondSlope = self.calcSlope(self.paretoFrontAcc[i], self.paretoFrontAcc[i-2], self.paretoFrontCov[i], self.paretoFrontCov[i-2])
# deleted = False
# if firstSlope >= secondSlope:
# #Delete point
# self.paretoFrontAcc.pop[i-1]
# self.paretoFrontCov.pop[i-1]
# deleted = True
# self.currRightRef -= 1
# i -= 1
# if not deleted:
# i -= 1
#
#
# def getParetoFitness(self, objectivePair):
# """ Determines and returns the pareto fitness based on the proportional distance of a given point"""
# # Find the relative distance from the front. Returns 1 (i.e. perfect fitness, if on the front)
#
# #Calculate distance from point to paretoFront
# #Step through front intervals and check to see if interval contains intersect if so grab that distance.
# print 'getting pareto'
# print objectivePair
# i = 0
# foundPerp = False
# badDist = None
# while not foundPerp:
# frontIntercept = self.calcIntercept(self.paretoFrontAcc[i], self.paretoFrontAcc[i+1], self.paretoFrontCov[i], self.paretoFrontCov[i+1], objectivePair[0], objectivePair[1])
# if frontIntercept[0] >= self.paretoFrontAcc[i] and frontIntercept[0] <= self.paretoFrontAcc[i+1]:
# foundPerp = True
# badDist = self.calcDistance(frontIntercept[0],objectivePair[0],frontIntercept[1],objectivePair[1])
# print badDist
# i += 1
# #Calculate distance from point to minFit edge.
# lastPoint = len(self.paretoFrontAcc) - 1
# minIntercept = self.calcIntercept(self.paretoFrontAcc[0], self.paretoFrontAcc[lastPoint], self.paretoFrontCov[0], self.paretoFrontCov[lastPoint], objectivePair[0], objectivePair[1])
# goodDist = self.calcDistance(minIntercept[0],objectivePair[0],minIntercept[1],objectivePair[1])
#
# paretoFitness = goodDist / float(goodDist + badDist)
# print 'end'
# return paretoFitness
#
#
# def calcDistance(self, y1, y2, x1, x2):
# distance = math.sqrt(math.pow(x2-x1,2) + math.pow(y2-y1,2))
# return distance
#
#
# def calcIntercept(self, y1a, y2a, x1a, x2a, y1b, x1b):
# """ Calculates the coordinates at which the two lines 'A' defined by points and 'B', defined by a point and slope, intersect """
# slopeA = self.calcSlope(y1a, y2a, x1a, x2a)
# slopeB = -1*slopeA
# xIntercept = (slopeA*x1a - slopeB*x1b + y1b - y1a) / float(slopeA - slopeB)
# yIntercept = slopeA*(xIntercept - x1a) + y1a
# return [yIntercept,xIntercept]
# def updateFront(self, objectivePair):
# """ Handles process of checking and adjusting the fitness pareto front. """
# #Update any changes to the maximum Cov - automatically adds point if new cov max is found
# #objectivePair[0] == accuracy
# #objectivePair[1] == cover
# if objectivePair[1] > self.coverMax: #Adds a new Cover Max Point Only (will also cover the first point entry)
# self.coverMax = objectivePair[1]
# self.paretoFrontRawCov.append(self.coverMax)
# self.paretoFrontCov.append(1.0)
# self.adjustCoverList()
# self.paretoFrontAcc.append(objectivePair[0])
# if objectivePair[0] > self.accuracyMax: #Should be true only for the first point.
# self.accuracyMax = objectivePair[0]
#
# if self.checkFront(objectivePair):
# self.adjustFront(objectivePair)
# print self.paretoFrontAcc
# print self.paretoFrontRawCov
# print self.paretoFrontCov
#
#
# def adjustCoverList(self):
# for i in range(len(self.paretoFrontRawCov)-1):
# self.paretoFrontCov[i] = self.paretoFrontRawCov[i] / float(self.coverMax)
#
#
# def checkFront(self, objectivePair):
# """ Takes a new pair of accuracy and usefulCover values and checks to see if this pair adds to defining a better non-dominated front"""
# #Algorithm to check for non-dominated point
# nonDominated = False
# self.currRightRef = 0
# while objectivePair[0] <= self.paretoFrontAcc[self.currRightRef] and self.currRightRef < len(self.paretoFrontAcc) - 1: #if only one point, than currRightRef == 0
# # define lower bound accuracy of current pareto front
# self.currRightRef += 1
#
# if self.currRightRef == 0: #special case - Front boundary - accuracy (AUTO INSERT)
# if self.accuracyMax < objectivePair[0]: #Won't be true for the first point.
# self.accuracyMax = objectivePair[0]
# nonDominated = True
# self.paretoFrontAcc.insert(self.currRightRef,objectivePair[0])
# self.paretoFrontRawCov.insert(self.currRightRef,objectivePair[1])
# self.paretoFrontCov.insert(self.currRightRef, objectivePair[1]/float(self.coverMax))
# #self.adjustCoverList()
# print 'inserted new best acc'
#
# elif self.currRightRef > len(self.paretoFrontAcc)-1: #Special case - Front boundary -cover (AUTO INSERT)
# if self.coverMax < objectivePair[1]:
# self.coverMax = objectivePair[1]
# nonDominated = True
# self.paretoFrontRawCov.append(self.coverMax)
# self.paretoFrontCov.append(1.0)
# #self.adjustCoverList()
# self.paretoFrontAcc.append(objectivePair[0])
#
# else: #Check to add a new point in the middle
# # i points to lower Acc point and i-1 points to higher acc point.
# frontSegmentSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], self.paretoFrontAcc[self.currRightRef], self.paretoFrontCov[self.currRightRef-1], self.paretoFrontCov[self.currRightRef])
# newSlope = self.calcSlope(self.paretoFrontAcc[self.currRightRef-1], objectivePair[0], self.paretoFrontCov[self.currRightRef-1], objectivePair[1])
# #check slope to new point from
# if newSlope >= frontSegmentSlope:
# nonDominated = True
# self.paretoFrontAcc.insert(self.currRightRef,objectivePair[0])
# self.paretoFrontCov.insert(self.currRightRef,objectivePair[1])
# # currRightRef now points to new point
# print 'inserted on front'
# return nonDominated