-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexstracs_rc.py
714 lines (606 loc) · 39.1 KB
/
exstracs_rc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
"""
Name: ExSTraCS_Rule Compaction.py
Authors: Ryan Urbanowicz - Written at Dartmouth College, Hanover, NH, USA
Contact: ryan.j.urbanowicz@darmouth.edu
Created: April 25, 2014
Modified: August 25,2014
Description: Includes several rule compaction/rule filter strategies, which can be selected as a post-processing stage following ExSTraCS classifier
population learning. Fu1, Fu2, and CRA2 were previously proposed/published strategies from other authors. QRC, PDRC, and QRF were
proposed and published by Jie Tan, Jason Moore, and Ryan Urbanowicz in "Rapid Rule Compaction Strategies for Global Knowledge Discovery
in a Supervised Learning Classifier System." [2013].
---------------------------------------------------------------------------------------------------------------------------------------------------------
ExSTraCS V2.0: Extended Supervised Tracking and Classifying System - An advanced LCS designed specifically for complex, noisy classification/data mining tasks,
such as biomedical/bioinformatics/epidemiological problem domains. This algorithm should be well suited to any supervised learning problem involving
classification, prediction, data mining, and knowledge discovery. This algorithm would NOT be suited to function approximation, behavioral modeling,
or other multi-step problems. This LCS algorithm is most closely based on the "UCS" algorithm, an LCS introduced by Ester Bernado-Mansilla and
Josep Garrell-Guiu (2003) which in turn is based heavily on "XCS", an LCS introduced by Stewart Wilson (1995).
Copyright (C) 2014 Ryan Urbanowicz
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABLILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
---------------------------------------------------------------------------------------------------------------------------------------------------------
"""
#Import Required Modules-------------------------------
from exstracs_constants import *
from exstracs_classaccuracy import ClassAccuracy
from exstracs_prediction import *
from exstracs_classifierset import ClassifierSet
import copy
import math
#------------------------------------------------------
class RuleCompaction:
def __init__(self, pop, originalTrainAcc, originalTestAcc, exploreIter):
""" Initialize and run the specified rule compaction strategy. """
print("---------------------------------------------------------------------------------------------------------")
print("Starting Rule Compaction Algorithm ("+str(cons.ruleCompactionMethod)+") ...")
self.pop = pop
self.originalTrainAcc = originalTrainAcc
self.originalTestAcc = originalTestAcc
self.exploreIter = exploreIter
#Outside Rule Compaction Strategies------------------------------------------------------------------------------------
if cons.ruleCompactionMethod == 'Fu1': #(Implemented by Jie Tan, Referred to as 'A12' in original code.)
self.Approach_Fu1()
elif cons.ruleCompactionMethod =='Fu2': #(Implemented by Jie Tan, Referred to as 'A13' in original code.)
self.Approach_Fu2()
elif cons.ruleCompactionMethod =='CRA2': #(Implemented by Jie Tan, Referred to as 'A8' or 'Dixon' in original code.)
self.Approach_CRA2()
#------------------------------------------------------------------------------------------------------------------------
#ExSTraCS Original Rule Compaction Strategies:--------------------------------------------------------------------------------
elif cons.ruleCompactionMethod =='QRC': #Quick Rule Compaction (Developed by Jie Tan, Referred to as 'A9' or 'UCRA' in original code.)
self.Approach_QRC()
elif cons.ruleCompactionMethod =='PDRC': #Parameter Driven Rule Compaction - (Developed by Jie Tan, Referred to as 'A17' or 'QCRA' in original code.)
self.Approach_PDRC()
elif cons.ruleCompactionMethod == 'QRF': #Quick Rule Filter - (Developed by Ryan Urbanowicz, Referred to as 'Quick Rule Cleanup' or 'QRC' in original code.)
self.Approach_QRF()
elif cons.ruleCompactionMethod == 'SRC': #Supervised Rule Compaction
self.Approach_SRC()
elif cons.ruleCompactionMethod == 'SRC2': #Supervised Rule Compaction
self.Approach_SRC2()
else:
print("RuleCompaction: Error - specified rule compaction strategy not found.")
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# COMPACTION STRATEGIES
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def Approach_Fu1(self):
""" This approach completely follows Fu's first approach. In the third stage, the number of instances a rule matched is used to rank
the rules and guide covering. Ranking list is updated each time some instances are covered and removed from the training set. """
#Order Classifier Set---------------------------------------------------------------------------------------------------------
lastGood_popSet = sorted(self.pop.popSet, key = self.numerositySort)
self.pop.popSet = lastGood_popSet[:]
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
keepGoing = True
while keepGoing:
del self.pop.popSet[0] #Remove next classifier
newAccuracy = self.performanceEvaluation(True) #Perform classifier set training accuracy evaluation
if newAccuracy < self.originalTrainAcc:
keepGoing = False
self.pop.popSet = lastGood_popSet[:]
else:
lastGood_popSet = self.pop.popSet[:]
if len(self.pop.popSet) == 0:
keepGoing = False
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#STAGE 2----------------------------------------------------------------------------------------------------------------------
retainedClassifiers = []
RefAccuracy = self.originalTrainAcc
for i in range(len(self.pop.popSet)):
print(i)
heldClassifier = self.pop.popSet[0]
del self.pop.popSet[0]
newAccuracy = self.performanceEvaluation(True) #Perform classifier set training accuracy evaluation
if newAccuracy < RefAccuracy:
retainedClassifiers.append(heldClassifier)
RefAccuracy = newAccuracy
self.pop.popSet = retainedClassifiers
print("STAGE 2 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#STAGE 3----------------------------------------------------------------------------------------------------------------------
finalClassifiers = []
completelyGeneralRuleRef = None
if len(self.pop.popSet) == 0: #Stop Check
keepGoing = False
else:
keepGoing = True
#Make the match count list in preparation for state 3-------------------------------------------------------------------------
matchCountList = [0.0 for v in range(len(self.pop.popSet))]
cons.env.startEvaluationMode()
for i in range(len(self.pop.popSet)): #For the population of classifiers
cons.env.resetDataRef(True)
for j in range(cons.env.formatData.numTrainInstances): #For each instance in training data
cl = self.pop.popSet[i]
state = cons.env.getTrainInstance()[0]
doesMatch = cl.match(state)
if doesMatch:
matchCountList[i] += 1
cons.env.newInstance(True)
if len(self.pop.popSet[i].condition) == 0:
completelyGeneralRuleRef = i
cons.env.stopEvaluationMode()
if completelyGeneralRuleRef != None: #gets rid of completely general rule.
del matchCountList[completelyGeneralRuleRef]
del self.pop.popSet[completelyGeneralRuleRef]
#----------------------------------------------------------------------------------------------------------------------------
tempEnv = copy.deepcopy(cons.env)
trainingData = tempEnv.formatData.trainFormatted
while len(trainingData) > 0 and keepGoing:
bestRef = None
bestValue = None
for i in range(len(matchCountList)):
if bestValue == None or bestValue < matchCountList[i]:
bestRef = i
bestValue = matchCountList[i]
if bestValue == 0.0 or len(self.pop.popSet) < 1:
keepGoing = False
continue
#Update Training Data----------------------------------------------------------------------------------------------------
matchedData = 0
w = 0
cl = self.pop.popSet[bestRef]
for i in range(len(trainingData)):
state = trainingData[w][0]
doesMatch = cl.match(state)
if doesMatch:
matchedData += 1
del trainingData[w]
else:
w += 1
if matchedData > 0:
finalClassifiers.append(self.pop.popSet[bestRef]) #Add best classifier to final list - only do this if there are any remaining matching data instances for this rule!
#Update classifier list
del self.pop.popSet[bestRef]
#re-calculate match count list
matchCountList = [0.0 for v in range(len(self.pop.popSet))]
for i in range(len(self.pop.popSet)):
dataRef = 0
for j in range(len(trainingData)): #For each instance in training data
cl = self.pop.popSet[i]
state = trainingData[dataRef][0]
doesMatch = cl.match(state)
if doesMatch:
matchCountList[i] += 1
dataRef +=1
if len(self.pop.popSet) == 0:
keepGoing = False
self.pop.popSet = finalClassifiers
print("STAGE 3 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
############################################################################################################################################################################################
def Approach_Fu2(self):
""" This approach completely follows Fu's second approach. All three stages use accuracy to sort rules."""
#Order Classifier Set---------------------------------------------------------------------------------------------------------
lastGood_popSet = sorted(self.pop.popSet, key = self.numerositySort)
self.pop.popSet = lastGood_popSet[:]
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
keepGoing = True
while keepGoing:
del self.pop.popSet[0] #Remove next classifier
newAccuracy = self.performanceEvaluation(True) #Perform classifier set training accuracy evaluation
if newAccuracy < self.originalTrainAcc:
keepGoing = False
self.pop.popSet = lastGood_popSet[:]
else:
lastGood_popSet = self.pop.popSet[:]
if len(self.pop.popSet) == 0:
keepGoing = False
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#STAGE 2----------------------------------------------------------------------------------------------------------------------
retainedClassifiers = []
RefAccuracy = self.originalTrainAcc
for i in range(len(self.pop.popSet)):
print(i)
heldClassifier = self.pop.popSet[0]
del self.pop.popSet[0]
newAccuracy = self.performanceEvaluation(True) #Perform classifier set training accuracy evaluation
if newAccuracy < RefAccuracy:
retainedClassifiers.append(heldClassifier)
RefAccuracy = newAccuracy
self.pop.popSet = retainedClassifiers
print("STAGE 2 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#STAGE 3----------------------------------------------------------------------------------------------------------------------
Sort_popSet = sorted(self.pop.popSet, key = self.numerositySort, reverse = True)
self.pop.popSet = Sort_popSet[:]
RefAccuracy = self.performanceEvaluation(True)
if len(self.pop.popSet) == 0: #Stop check
keepGoing = False
else:
keepGoing = True
for i in range(len(self.pop.popSet)):
heldClassifier = self.pop.popSet[0]
del self.pop.popSet[0]
newAccuracy = self.performanceEvaluation(True) #Perform classifier set training accuracy evaluation
if newAccuracy < RefAccuracy:
self.pop.popSet.append(heldClassifier)
else:
RefAccuracy = newAccuracy
print("STAGE 3 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
############################################################################################################################################################################################
def Approach_CRA2(self):
""" This approach is based on Dixon's and Shoeleh's method. For each instance, form a match set and then a correct set. The most useful rule in
the correct set is moved into the final ruleset. In this approach, the most useful rule has the largest product of accuracy
and generality."""
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
retainedClassifiers = []
self.matchSet = []
self.correctSet = []
cons.env.startEvaluationMode()
cons.env.resetDataRef(True)
for j in range(cons.env.formatData.numTrainInstances):
state_phenotype = cons.env.getTrainInstance()
state = state_phenotype[0]
phenotype = state_phenotype[1]
#Create MatchSet
for i in range(len(self.pop.popSet)):
cl = self.pop.popSet[i]
if cl.match(state):
self.matchSet.append(i)
#Create CorrectSet
if cons.env.formatData.discretePhenotype:
for i in range(len(self.matchSet)):
ref = self.matchSet[i]
if self.pop.popSet[ref].phenotype == phenotype:
self.correctSet.append(ref)
else:
for i in range(len(self.matchSet)):
ref = self.matchSet[i]
if float(phenotype) <= float(self.pop.popSet[ref].phenotype[1]) and float(phenotype) >= float(self.pop.popSet[ref].phenotype[0]):
self.correctSet.append(ref)
#Find the rule with highest accuracy, generality product
highestValue = 0
highestRef = 0
for i in range(len(self.correctSet)):
ref = self.correctSet[i]
product = self.pop.popSet[ref].accuracy * (cons.env.formatData.numAttributes - len(self.pop.popSet[ref].condition)) / float(cons.env.formatData.numAttributes)
if product > highestValue:
highestValue = product
highestRef = ref
#If the rule is not already in the final ruleset, move it to the final ruleset
if highestValue == 0 or self.pop.popSet[highestRef] in retainedClassifiers:
pass
else:
retainedClassifiers.append(self.pop.popSet[highestRef])
#Move to the next instance
cons.env.newInstance(True)
self.matchSet = []
self.correctSet = []
cons.env.stopEvaluationMode()
self.pop.popSet = retainedClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
############################################################################################################################################################################################
def Approach_QRC(self):
"""Called QCRA in the paper. It uses fitness to rank rules and guide covering. It's the same as Approach 15, but the code is re-written in
order to speed up."""
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
finalClassifiers = []
if len(self.pop.popSet) == 0: #Stop check
keepGoing = False
else:
keepGoing = True
lastGood_popSet = sorted(self.pop.popSet, key = self.accuracySort, reverse = True)
self.pop.popSet = lastGood_popSet[:]
tempEnv = copy.deepcopy(cons.env)
trainingData = tempEnv.formatData.trainFormatted
while len(trainingData) > 0 and keepGoing:
newTrainSet = []
matchedData = 0
for w in range(len(trainingData)):
cl = self.pop.popSet[0]
state = trainingData[w][0]
doesMatch = cl.match(state)
if doesMatch:
matchedData += 1
else:
newTrainSet.append(trainingData[w])
if matchedData > 0:
finalClassifiers.append(self.pop.popSet[0]) #Add best classifier to final list - only do this if there are any remaining matching data instances for this rule!
#Update classifier list and training set list
trainingData = newTrainSet
del self.pop.popSet[0]
if len(self.pop.popSet) == 0:
keepGoing = False
self.pop.popSet = finalClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
############################################################################################################################################################################################
def Approach_PDRC(self):
""" This approach is based on Dixon's approach, called UCRA in the paper. For each instance, form a match set and then a correct set.
The most useful rule in the correct set is moved into the final ruleset. In this approach, the most useful rule has the largest
product of accuracy, numerosity and generality."""
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
retainedClassifiers = []
self.matchSet = []
self.correctSet = []
cons.env.startEvaluationMode()
cons.env.resetDataRef(True)
for j in range(cons.env.formatData.numTrainInstances):
state_phenotype = cons.env.getTrainInstance()
state = state_phenotype[0]
phenotype = state_phenotype[1]
#Create MatchSet
for i in range(len(self.pop.popSet)):
cl = self.pop.popSet[i]
if cl.match(state):
self.matchSet.append(i)
#Create CorrectSet
if cons.env.formatData.discretePhenotype:
for i in range(len(self.matchSet)):
ref = self.matchSet[i]
if self.pop.popSet[ref].phenotype == phenotype:
self.correctSet.append(ref)
else:
for i in range(len(self.matchSet)):
ref = self.matchSet[i]
if float(phenotype) <= float(self.pop.popSet[ref].phenotype[1]) and float(phenotype) >= float(self.pop.popSet[ref].phenotype[0]):
self.correctSet.append(ref)
#Find the rule with highest accuracy, generality and numerosity product
highestValue = 0
highestRef = 0
for i in range(len(self.correctSet)):
ref = self.correctSet[i]
product = self.pop.popSet[ref].accuracy * (cons.env.formatData.numAttributes - len(self.pop.popSet[ref].condition)) / float(cons.env.formatData.numAttributes) * self.pop.popSet[ref].numerosity
if product > highestValue:
highestValue = product
highestRef = ref
#If the rule is not already in the final ruleset, move it to the final ruleset
if highestValue == 0 or self.pop.popSet[highestRef] in retainedClassifiers:
pass
else:
retainedClassifiers.append(self.pop.popSet[highestRef])
#Move to the next instance
cons.env.newInstance(True)
self.matchSet = []
self.correctSet = []
cons.env.stopEvaluationMode()
self.pop.popSet = retainedClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# FILTER STRATEGIES
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def Approach_QRF(self):
""" An extremely fast rule compaction strategy. Removes any rule with an accuracy below 50% and any rule that covers only one instance, but specifies more than one attribute
(won't get rid of rare variant rules)"""
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
retainedClassifiers = []
for i in range(len(self.pop.popSet)):
if self.pop.popSet[i].accuracy <= 0.5 or (self.pop.popSet[i].correctCover == 1 and len(self.pop.popSet[i].specifiedAttList) > 1):
pass
else:
retainedClassifiers.append(self.pop.popSet[i])
self.pop.popSet = retainedClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#------------------------------------------------------------------------------------------------------------------------------------------------
def Approach_SRC(self):
"""Experimental approach for the new supervised learning fitness."""
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
finalClassifiers = []
if len(self.pop.popSet) == 0: #Stop check
keepGoing = False
else:
keepGoing = True
#Sort by decreasing fitness
lastGood_popSet = sorted(self.pop.popSet, key = self.fitnessSort, reverse = True)
self.pop.popSet = lastGood_popSet[:]
#copy training instances
tempEnv = copy.deepcopy(cons.env)
trainingData = tempEnv.formatData.trainFormatted
while len(trainingData) > 0 and keepGoing:
newTrainSet = []
matchedCorrectData = 0
cl = self.pop.popSet[0]
#randomProbClass = cons.env.formatData.classProportions[cl.phenotype]
#if not cl.epochComplete or cl.accuracy <= randomProbClass or (cl.correctCover == 1 and len(cl.specifiedAttList) > 1): #Quick Delete
#if not cl.epochComplete or cl.accuracy <= cl.phenotype_RP: #Quick Delete
if cl.accuracy <= cl.phenotype_RP: #Quick Delete
del self.pop.popSet[0]
if len(self.pop.popSet) == 0:
keepGoing = False
else:
for w in range(len(trainingData)):
state = trainingData[w][0]
doesMatch = cl.match(state)
if not doesMatch or (cons.env.formatData.discretePhenotype and str(cl.phenotype) != str(trainingData[w][1])) or (not cons.env.formatData.discretePhenotype and float(cl.phenotype[0]) <= float(trainingData[w][1]) and float(cl.phenotype[1]) >= float(trainingData[w][1])) :
newTrainSet.append(trainingData[w])
else:
matchedCorrectData += 1
# if doesMatch and str(cl.phenotype) == str(trainingData[w][1]):
# matchedCorrectData += 1
# else:
# newTrainSet.append(trainingData[w])
if matchedCorrectData > 0:
finalClassifiers.append(self.pop.popSet[0]) #Add best classifier to final list - only do this if there are any remaining matching data instances for this rule!
#Update classifier list and training set list
trainingData = newTrainSet
del self.pop.popSet[0]
if len(self.pop.popSet) == 0:
keepGoing = False
self.pop.popSet = finalClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
def Approach_SRC2(self):
"""Similar to above approach except that user can specify the numberrules that an instance must match correct before instance is removed."""
instanceCount = 1
print("Starting number of classifiers = " + str(len(self.pop.popSet)))
print("Original Training Accuracy = " +str(self.originalTrainAcc))
print("Original Testing Accuracy = " +str(self.originalTestAcc))
#STAGE 1----------------------------------------------------------------------------------------------------------------------
finalClassifiers = []
if len(self.pop.popSet) == 0: #Stop check
keepGoing = False
else:
keepGoing = True
lastGood_popSet = sorted(self.pop.popSet, key = self.fitnessSort, reverse = True)
self.pop.popSet = lastGood_popSet[:]
tempEnv = copy.deepcopy(cons.env)
trainingData = tempEnv.formatData.trainFormatted
instanceList = []
for i in range(len(trainingData)):
instanceList.append(0)
while len(trainingData) > 0 and keepGoing:
newTrainSet = []
matchedCorrectData = 0
cl = self.pop.popSet[0]
#randomProbClass = cons.env.formatData.classProportions[cl.phenotype]
#if cl.accuracy <= cl.phenotype_RP or (cl.correctCover == 1 and len(cl.specifiedAttList) > 1): #Quick Delete
if cl.accuracy <= cl.phenotype_RP: #Quick Delete
del self.pop.popSet[0]
if len(self.pop.popSet) == 0:
keepGoing = False
else:
for w in range(len(trainingData)):
state = trainingData[w][0]
doesMatch = cl.match(state)
if not doesMatch or (cons.env.formatData.discretePhenotype and str(cl.phenotype) != str(trainingData[w][1])) or (not cons.env.formatData.discretePhenotype and float(cl.phenotype[0]) <= float(trainingData[w][1]) and float(cl.phenotype[1]) >= float(trainingData[w][1])) :
if instanceList[w] < instanceCount:
newTrainSet.append(trainingData[w])
else:
matchedCorrectData += 1
instanceList[w] +=1
# if doesMatch and str(cl.phenotype) == str(trainingData[w][1]):
# matchedCorrectData += 1
# instanceList[w] +=1
# if instanceList[w] < instanceCount:
# newTrainSet.append(trainingData[w])
if matchedCorrectData > 0:
finalClassifiers.append(self.pop.popSet[0]) #Add best classifier to final list - only do this if there are any remaining matching data instances for this rule!
#Update classifier list and training set list
trainingData = newTrainSet
del self.pop.popSet[0]
if len(self.pop.popSet) == 0:
keepGoing = False
self.pop.popSet = finalClassifiers
print("STAGE 1 Ended: Classifiers Remaining = " +str(len(self.pop.popSet)))
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# EVALUTATION METHODS
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def performanceEvaluation(self, isTrain):
""" Performs Training or Testing Evaluation"""
if cons.env.formatData.discretePhenotype:
adjustedBalancedAccuracy = self.doPopEvaluation(isTrain)
else: #ContinuousCode #########################
adjustedBalancedAccuracy = self.doContPopEvaluation(isTrain)
return adjustedBalancedAccuracy
def doPopEvaluation(self, isTrain):
""" Performs evaluation of population via the copied environment. The population is maintained unchanging throughout the evaluation.
Works on both training and testing data. """
cons.env.startEvaluationMode()
noMatch = 0 #How often does the population fail to have a classifier that matches an instance in the data.
tie = 0 #How often can the algorithm not make a decision between classes due to a tie.
cons.env.resetDataRef(isTrain) #Go to first instance in data set
phenotypeList = cons.env.formatData.phenotypeList #shorter reference to phenotypeList - based on training data (assumes no as yet unseen phenotypes in testing data)
#----------------------------------------------
classAccDict = {}
for each in phenotypeList:
classAccDict[each] = ClassAccuracy()
#----------------------------------------------
if isTrain:
instances = cons.env.formatData.numTrainInstances
else:
instances = cons.env.formatData.numTestInstances
#----------------------------------------------------------------------------------------------
for inst in range(instances):
if isTrain:
state_phenotype = cons.env.getTrainInstance()
else:
state_phenotype = cons.env.getTestInstance()
#-----------------------------------------------------------------------------
self.pop.makeEvalMatchSet(state_phenotype[0])
prediction = Prediction(self.pop, self.exploreIter)
phenotypeSelection = prediction.getDecision()
#-----------------------------------------------------------------------------
if phenotypeSelection == None:
noMatch += 1
elif phenotypeSelection == 'Tie':
tie += 1
else: #Instances which failed to be covered are excluded from the initial accuracy calculation (this is important to the rule compaction algorithm)
for each in phenotypeList:
thisIsMe = False
accuratePhenotype = False
truePhenotype = state_phenotype[1]
if each == truePhenotype:
thisIsMe = True #Is the current phenotype the true data phenotype.
if phenotypeSelection == truePhenotype:
accuratePhenotype = True
classAccDict[each].updateAccuracy(thisIsMe, accuratePhenotype)
cons.env.newInstance(isTrain) #next instance
self.pop.clearSets()
#Calculate Balanced Accuracy---------------------------------------------
balancedAccuracy = 0
for each in phenotypeList:
try:
sensitivity = classAccDict[each].T_myClass / (float(classAccDict[each].T_myClass + classAccDict[each].F_otherClass))
except:
sensitivity = 0.0
try:
specificity = classAccDict[each].T_otherClass / (float(classAccDict[each].T_otherClass + classAccDict[each].F_myClass))
except:
specificity = 0.0
balancedClassAccuracy = (sensitivity + specificity) / 2.0
balancedAccuracy += balancedClassAccuracy
balancedAccuracy = balancedAccuracy / float(len(phenotypeList))
#Adjustment for uncovered instances - to avoid positive or negative bias we incorporate the probability of guessing a phenotype by chance (e.g. 50% if two phenotypes)---------------------------------------
predictionFail = float(noMatch)/float(instances)
predictionTies = float(tie)/float(instances)
predictionMade = 1.0 - (predictionFail + predictionTies)
adjustedBalancedAccuracy = (balancedAccuracy * predictionMade) + ((1.0 - predictionMade) * (1.0 / float(len(phenotypeList))))
cons.env.stopEvaluationMode()
return adjustedBalancedAccuracy
def doContPopEvaluation(self, isTrain):
""" Performs evaluation of population via the copied environment. Specifically developed for continuous phenotype evaulation.
The population is maintained unchanging throughout the evaluation. Works on both training and testing data. """
cons.env.startEvaluationMode()
noMatch = 0 #How often does the population fail to have a classifier that matches an instance in the data.
cons.env.resetDataRef(isTrain) #Go to first instance in data set
accuracyEstimateSum = 0
if isTrain:
instances = cons.env.formatData.numTrainInstances
else:
instances = cons.env.formatData.numTestInstances
#----------------------------------------------------------------------------------------------
for inst in range(instances):
if isTrain:
state_phenotype = cons.env.getTrainInstance()
else:
state_phenotype = cons.env.getTestInstance()
#-----------------------------------------------------------------------------
self.pop.makeEvalMatchSet(state_phenotype[0])
prediction = Prediction(self.pop, self.exploreIter)
phenotypePrediction = prediction.getDecision()
#-----------------------------------------------------------------------------
if phenotypePrediction == None:
noMatch += 1
else: #Instances which failed to be covered are excluded from the initial accuracy calculation (this is important to the rule compaction algorithm)
predictionError = math.fabs(float(phenotypePrediction) - float(state_phenotype[1]))
phenotypeRange = cons.env.formatData.phenotypeList[1] - cons.env.formatData.phenotypeList[0]
accuracyEstimateSum += 1.0 - (predictionError / float(phenotypeRange))
cons.env.newInstance(isTrain) #next instance
self.pop.clearSets()
#----------------------------------------------------------------------------------------------
#Adjustment for uncovered instances - to avoid positive or negative bias we incorporate the probability of guessing a phenotype by chance (e.g. 50% if two phenotypes)---------------------------------------
adjustedAccuracyEstimate = accuracyEstimateSum / float(instances) #noMatchs are treated as incorrect predictions (can see no other fair way to do this)
cons.env.stopEvaluationMode()
return adjustedAccuracyEstimate
def accuracySort(self, cl):
return cl.accuracy
def fitnessSort(self, cl):
#return cl.fitness
return (cl.indFitness * cl.fitness)
def numerositySort(self, cl):
""" Sorts from smallest numerosity to largest """
return cl.numerosity