-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsetup.py
50 lines (46 loc) · 2.11 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from setuptools import find_packages, setup
# read the contents of README file
from os import path
from io import open # for Python 2 and 3 compatibility
this_directory = path.abspath(path.dirname(__file__))
# read the contents of requirements.txt
with open(path.join(this_directory, 'requirements.txt'),
encoding='utf-8') as f:
requirements = f.read().splitlines()
setup(name='DGFraud-TF2',
version="0.0.1",
author="Yingtong Dou, Zhongzheng Lu, Zhiqin Yang, Kay Liu, Yutong Deng, "
"Hengrui Zhang, Zhiwei Liu and UIC BDSC Lab",
author_email="bdscsafegraph@gmail.com",
description='A Deep Graph-based Toolbox for Fraud Detection '
'in Tensorflow 2.X',
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
url='https://github.com/safe-graph/DGFraud-TF2',
download_url='https://github.com/safe-graph/DGFraud-TF2/archive/'
'master.zip',
keywords=['fraud detection', 'anomaly detection', 'graph neural network',
'data mining', 'security'],
install_requires=['numpy>=1.19.2',
'tensorflow>=2.0',
'scipy>=1.2.1',
'scikit_learn>=0.21rc2',
'tqdm>=4.31.1'
],
packages=find_packages(exclude=['test']),
include_package_data=True,
setup_requires=['setuptools>=38.6.0'],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Education',
'Intended Audience :: Financial and Insurance Industry',
'Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'Intended Audience :: Information Technology',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
],
)