Skip to content

Latest commit

 

History

History
97 lines (79 loc) · 3.31 KB

File metadata and controls

97 lines (79 loc) · 3.31 KB

LinkedIn


Logo

Practicas del curso de Modelos predictivos con Machine Learning de la UVA.

Practicas del curso de Modelos predictivos con Machine Learning de la UVA.
Explore the docs »

· Report Bug · Request Feature

About The Project & Demo link

Practicas del curso de Modelos predictivos con Machine Learning de la UVA.

Logo

Contact

Email: sergio.alegre.arribas EN gmail.com
LinkedIn: https://www.linkedin.com/in/sergioalegre
Website: http://me.sergioalegre.es

Built With

  • Python
  • Machine Learning
  • Regresion Lineal / Linear Regression
  • Regresion Polinomial / Polinomial Regression.
  • SVR / Support Vector Regression.
  • Regresion Logistica con Resampling.
  • Matriz de confusion / Confusion Matrix
  • Variables Dummy
  • Selección de caracteristicas
  • Clustering con K-means
  • Series de tiempo / Time Series

Getting Started

  • Ejemplos sencillos de diversas técnicas de aprendizaje de diferentes datasets populares. Ejemplos de Regresión lineal, SVR

  • Simple example of diffentent ML techniques using popular datasets. Examples based Linear Regression, Random Forest, Support Vector Machine, K-Means Clustering and Tensorflow.

Prerequisites

  • Anaconda para ejecurtar los Juniper notebooks / R Studio o cuenta en Colab o servicio similar.

  • Anaconda to run Juniper notebooks / R Studio o have a Colab account or similar service.

Installation

  • Solamente instalar Anaconda e instalar las librerias si alguna faltara.

  • Just install Anaconda and install, if needed, any missing dependency (library).

Usage

  • Simplemente importa el Juniper notebook o el archivo .R

  • Just import notebook or .R file.

Roadmap

  • En este repo iré almacenando más ejemplos comentados.

  • I'll add more examples.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.