-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNonParamStat.R
257 lines (206 loc) · 9.12 KB
/
NonParamStat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# ------------------------------------------------------------------------------------------------
# THIS CODE IS WRITTEN TO TEST NON-PARAMETRIC STATS FOR ANY TWO POSITIVELY CORRELATED SPECIES PAIR
# ..............to maintain consistency with model selection approach.
#--------------------------------------------------------------------------------------------------
source("CopulaFunctions.R")
source("vivj_matrix.R")
source("good_splist.R")
#---------------------------------------------------------------
#Processing function for a copula approach to synchrony
#
#---Input---------
# m : output from vivj_matrix.R
# nbin : number of bins used to get npa stats
# npa_stats : a character tag to choose any one of 3 npa stats (cor, P, D2)
#------Output - A list with these elements-------------------------------
# ranks : A dataframe with 2 columns, one for
# ds1 and one for ds2, corresponding to samples from the copula.
# spear : Spearman correlation (single number)
# kend : Kendall correlation (single number)
# Corl,Coru : covariance based statistics
# Pl,Pu : statistics show how the points within a copula scattered from right diagonal of the box within a pentagon
# Tl,Tu : statistics show how the points within a copula scattered along right diagonal of the box within a triangle
# D2l,D2u : measures the squared distance between the points from the right diagonal within a copula
copsync<-function(m,nbin,npa_stats){
vi<-m[,1]
vj<-m[,2]
#get mean and variance
vi_mean<-mean(vi)
vj_mean<-mean(vj)
var_vi<-var(vi)
var_vj<-var(vj)
spear<-NA
kend<-NA
Corl<-NA
Coru<-NA
Sl_Su_Si_P<-NA
Pl<-NA
Pu<-NA
D2l<-NA
D2u<-NA
if (length(vi)>0){
#get spear
spear<-cor(vi,vj, method ="pearson")
#get kend
kend<-cor(vi, vj, method ="kendall")
#----------------------------------------------------STATISTICS :2 ---------------------------------------------------------
#get Corl, Coru (covariance based new stat)
if(npa_stats=="cor"){
stat2<-CorlCoru(vi,vj,nbin=nbin)
Corl<-stat2[1]
Coru<-stat2[2]
}
#---------------------------------------------------------- STATISTICS : 4 -----------------------------------------------------------------
# get New statistics : Pl and Pu # distance from right diagonal in lower and upper triangle based stat
if(npa_stats=="P"){
stat4<-PlPu(vi,vj,nbin=nbin)
Sl_Su_Si_P<-stat4[[1]]
Pl<-stat4[[2]]
Pu<-stat4[[3]]
}
#--------------------------------------------------------- STATISTICS : 6 -----------------------------------------------------------------------
# get D2l : average of squared distance of points from the right diagonal of the box for lower triangle
# get D2u : average of squared distance of points from the right diagonal of the box for upper triangle
if(npa_stats=="D2"){
stat6<-D2lD2u(vi,vj,nbin=nbin)
D2l<-stat6[1]
D2u<-stat6[2]
}
}
return(list(ranks=data.frame(Rki=vi,Rkj=vj),
spear=spear,kend=kend,
Corl=Corl,Coru=Coru,
Sl_Su_Si_P=Sl_Su_Si_P,Pl=Pl,Pu=Pu,
D2l=D2l,D2u=D2u))
}
#---------------------------------------------------------------------------------------------------------------------------
#Calling the above on all pairs of several time series and returning npa stats
#-------------Input---------------------------------
# d_allsp : A list of data frames, each with columns Year and Dat
# The years are assumed to be sequential and all included,
# though there may be NAs in Dat and the years may not
# be all the same for ds1 and ds2.
# loc : location number
# pfname : Filename (without extension) prepended to plot files saved.
# good_sp : a vector of chosen species
# nbin : number of bins used to compute npa stats
# npa_stats : a character tag to choose any one of 3 npa stats
#----------Output - A list with these elements-----------------
# D A matrix of geographic distances between sampling locations
# spear A matrix of spearman results, length(d) by length(d)
# kend A matrix of kendall results, length(d) by length(d)
# Corl A matrix of Cl results, length(d) by length(d)
# Coru A matrix of Cu results, length(d) by length(d)
# Pl A matrix of Shy_lt results, length(d) by length(d)
# Pu A matrix of Shy_ut results, length(d) by length(d)
# D2l A matrix of R_l results, length(d) by length(d)
# D2u A matrix of R_u results, length(d) by length(d)
multcall<-function(d_allsp,loc,pfname,good_sp,nbin,npa_stats){
lensp<-length(good_sp)
#first initialize result receptacles for the output
spear<-matrix(NA,lensp,lensp)
colnames(spear) <- paste("sp",good_sp, sep="")
rownames(spear) <-paste("sp",good_sp, sep="")
kend<-matrix(NA,lensp,lensp)
colnames(kend) <- colnames(spear)
rownames(kend) <-rownames(spear)
Corl<-matrix(NA,lensp,lensp)
colnames(Corl) <- colnames(spear)
rownames(Corl) <-rownames(spear)
Coru<-matrix(NA,lensp,lensp)
colnames(Coru) <- colnames(spear)
rownames(Coru) <-rownames(spear)
Pl<-matrix(NA,lensp,lensp)
colnames(Pl) <- colnames(spear)
rownames(Pl) <-rownames(spear)
Pu<-matrix(NA,lensp,lensp)
colnames(Pu) <- colnames(spear)
rownames(Pu) <-rownames(spear)
D2l<-matrix(NA,lensp,lensp)
colnames(D2l) <- colnames(spear)
rownames(D2l) <-rownames(spear)
D2u<-matrix(NA,lensp,lensp)
colnames(D2u) <- colnames(spear)
rownames(D2u) <-rownames(spear)
corval<-spear
pval_BiCopIndep<-spear
#------------------- PLOT : copula_for_all_sp pair ----------------
pdf(paste(pfname,"_AllCops.pdf",sep=""),width=6*lensp, height=6*lensp)
op<-par(mfrow=c(lensp,lensp),mar=c(3,3,3,3), mgp=c(1.5,0.5,0))
for (ii in c(1:lensp)){
for (jj in c(1:lensp)){
#compute results
i<-good_sp[ii]
j<-good_sp[jj]
#cat("i,j",i,j,"\n")
#if(i!=j){
ms<-vivj_matrix(d_allsp=d_allsp,loc=loc,i=i,j=j,level=0.05,ploton=F,onbounds=F,lb=NA,ub=NA)
m<-ms$mat
corval[ii,jj]<-ms$corval
pval_BiCopIndep[ii,jj]<-ms$IndepTestRes
thisres<-copsync(m,nbin=nbin,npa_stats=npa_stats)
spear[ii,jj]<-thisres$spear
kend[ii,jj]<-thisres$kend
Corl[ii,jj]<-thisres$Corl
Coru[ii,jj]<-thisres$Coru
Pl[ii,jj]<-thisres$Pl
Pu[ii,jj]<-thisres$Pu
D2l[ii,jj]<-thisres$D2l
D2u[ii,jj]<-thisres$D2u
plot(thisres$ranks$Rki,thisres$ranks$Rkj,type='p',col=rgb(0,0,0,.2),pch=19,xlim=c(0,1),ylim=c(0,1),xlab=expression(u[i]),ylab=expression(v[j]),cex.lab=2)
mtext(paste0("[ i, j ] ="," [",i,",",j,"] ", ","," n=",dim(thisres$ranks)[1]),side = 3, line=0.15, adj=0.5, col="red")
#}
}
}
par(op)
dev.off()
#------------------- PLOT : (Sl, Su and Si)_P for_all_species pair ----------------
if(npa_stats=="P"){
pdf(paste(pfname,"_Sl_Su_Si_P.pdf",sep=""),width=6*lensp, height=6*lensp)
op<-par(mfrow=c(lensp,lensp),mar=c(3,3,3,3), mgp=c(1.5,0.5,0))
for (ii in 1:lensp){
for (jj in 1:lensp){
i<-good_sp[ii]
j<-good_sp[jj]
ms<-vivj_matrix(d_allsp=d_allsp,loc=loc,i=i,j=j,level=0.05,ploton=F,onbounds=F,lb=NA,ub=NA)
m<-ms$mat
thisres<-copsync(m,nbin=nbin,npa_stats=npa_stats)
if(is.na(thisres$Sl_Su_Si_P$Sl_P[1]) == F){
plot(thisres$Sl_Su_Si_P$dist_Sl_P,thisres$Sl_Su_Si_P$Sl_P,type='l',col="red",ylim=c(0,1),xlab=" ",ylab=" ")
lines(thisres$Sl_Su_Si_P$dist_Su_P,thisres$Sl_Su_Si_P$Su_P,type='l',col="blue",ylim=c(0,1))
lines(thisres$Sl_Su_Si_P$dist_Si_P,thisres$Sl_Su_Si_P$Si_P,type='l',lty="dashed",col="green4",ylim=c(0,1))
mtext(paste0("[ i, j ] ="," [",i,",",j,"], "," red : Sl_P, "," blue : Su_P, ", " green : Si_P"),side = 3, line=0.15, adj=0.5, col="black")
}else{
plot(0,0,type='p',col="white",cex=0,xlim=c(0,sqrt(2)/2),ylim=c(0,1),xlab=" ",ylab=" ")
mtext(paste0("[ i, j ] ="," [",i,",",j,"]," ),side = 3, line=0.15, adj=0.5, col="black")
mtext(paste0("NA" ),side = 3, line=-22.5, adj=0.5, col="black", cex=4)
}
}
}
par(op)
dev.off()
}
#-------------------------------------------------------------------------
level<-0.05
posnI<-which(pval_BiCopIndep>=level, arr.ind = T) #indices of indep. pair
posnN<-which(pval_BiCopIndep<level & corval <0, arr.ind = T) #indices of significantly neg. correlated pair
if(npa_stats=="cor"){
res<-list(spear=spear,kend=kend,
Corl=Corl,Coru=Coru,
posnI=posnI,
posnN=posnN)
}else if(npa_stats=="P"){
res<-list(spear=spear,kend=kend,
Pl=Pl,Pu=Pu,
posnI=posnI,
posnN=posnN)
}else if(npa_stats=="D2"){
res<-list(spear=spear,kend=kend,
D2l=D2l,D2u=D2u,
posnI=posnI,
posnN=posnN)
}else{
stop("Error in multcall function from NonParamStat.R : specify npa_stats correctly")
}
return(res)
}