-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgradio_demo.py
425 lines (350 loc) · 18.1 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from share import *
import gradio as gr
import numpy as np
import torch
import re
from PIL import Image
from tqdm import tqdm
from train.scripts.generate_lm_multiple import gen_sequence, build_visorgpt
from utils.seq2coord import gen_cond_mask
from gligen.gligen_inference_box import gligen_infer, build_gligen_model
from controlnet.gradio_pose2image_v2 import control_infer, build_control_model, build_controlv11_model
# init models
visorgpt_config_path = 'train/models/gpt2/config.json'
visorgpt_model_path = 'demo/ckpts/visorgpt/visorgpt_dagger_ta_tb.pt'
visorgpt_vocab_path = 'train/models/google_uncased_en_coord_vocab.txt'
# control_model_path = 'demo/ckpts/controlnet/control_sd15_openpose.pth'
control_model_path = 'demo/ckpts/controlnet/control_v11p_sd15_openpose.pth' # v1.1
control_sd_path = 'demo/ckpts/controlnet/v1-5-pruned-emaonly.safetensors'
control_model_config = 'demo/ControlNet/controlnet/models/cldm_v15.yaml'
gligen_model_path = 'demo/ckpts/gligen/diffusion_pytorch_model_box.bin'
visorgpt_args, visorgpt_model = build_visorgpt(model_config=visorgpt_config_path,
model_path=visorgpt_model_path,
vocab_path=visorgpt_vocab_path)
control_model, ddim_sampler = build_controlv11_model(model_path=control_model_path,
sd_path=control_sd_path,
config_path=control_model_config)
# build gligen model
g_model, g_autoencoder, g_text_encoder, g_diffusion, \
g_config, g_grounding_tokenizer_input = build_gligen_model(ckpt=gligen_model_path)
# maximum number of instances
max_num_keypoint = 16
max_num_bbox = 16
max_num_mask = 8
def generate_sequence(gen_type,
data_type,
instance_size,
num_instance,
object_name_inbox):
ctn = True
if gen_type == 'key point':
num_keypoint = 18
if num_instance > max_num_keypoint:
num_instance = max_num_keypoint
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(num_instance), str(num_keypoint)]) + ' ; [person'
elif gen_type == 'box' or gen_type == 'mask':
if not object_name_inbox.strip():
if gen_type == 'mask':
object_name_inbox = "bottle; cup"
else:
if data_type == 'object centric':
object_name_inbox = "great white shark"
else:
object_name_inbox = "person; frisbee"
num_keypoint = 0
if gen_type == 'mask':
if num_instance > max_num_mask:
num_instance = max_num_mask
if gen_type == 'box':
if num_instance > max_num_bbox:
num_instance = max_num_bbox
if data_type == 'object centric':
num_instance = 1
objects = ', '.join(object_name_inbox.strip().split(";"))
seq_prompt = '; '.join([gen_type, data_type, instance_size,
str(num_instance), str(num_keypoint)]) + '; ' + objects
if len(object_name_inbox.split(';')) > num_instance:
return {
raw_sequence: gr.update(
value="The umber of category names should be less than the number of instances, please try again :)",
visible=True)
}
print("input prompt: \n", seq_prompt)
sequence = gen_sequence(visorgpt_args, visorgpt_model, seq_prompt)
assert isinstance(sequence, list)
try:
cond_mask, cond_json = gen_cond_mask(sequence, ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
except:
cond_mask, cond_json = gen_cond_mask(sequence, not ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
ret_img = Image.fromarray(cond_mask)
if not gen_type == 'mask':
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=True),
text_container: cond_json,
sequence_container: ori_sequence
}
else:
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=False),
text_container: cond_json,
sequence_container: ori_sequence
}
def add_contents(gen_type,
data_type,
instance_size,
num_instance,
object_name_inbox,
num_continuous_gen,
global_seq):
ctn = True
if gen_type == 'key point':
num_keypoint = 18
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(num_instance), str(num_keypoint)]) + ' ; [person'
if num_continuous_gen:
ctn = True
cur_instance = int(global_seq.split(';')[3].strip())
new_number = cur_instance + num_continuous_gen
if new_number > max_num_keypoint:
new_number = max_num_keypoint
# prompt type a
if global_seq.split(';')[5].find('[') == -1:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
objects = re.findall(re.compile(r'[\[](.*?)[]]', re.S), global_seq)
objects = ' '.join(['[ person' + x + ']' for x in objects])
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(new_number), str(num_keypoint), objects])
# prompt type b
else:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
seq_list = global_seq.split(';')
seq_list[3] = str(new_number)
seq_prompt = ';'.join(seq_list)
elif gen_type == 'box' or gen_type == 'mask':
num_keypoint = 0
if data_type == 'object centric':
num_instance = 1
objects = ', '.join(object_name_inbox.strip().split(";"))
seq_prompt = '; '.join([gen_type, data_type, instance_size,
str(num_instance), str(num_keypoint)]) + '; ' + objects
if len(object_name_inbox.split(';')) > num_instance:
return {
raw_sequence: gr.update(value=f"The umber of category names should be less than the number of instances, please try again :)", visible=True)
}
if num_continuous_gen:
cur_instance = int(global_seq.split(';')[3].strip())
new_number = cur_instance + num_continuous_gen
if gen_type == 'mask':
if new_number > max_num_mask:
new_number = max_num_mask
if gen_type == 'box':
if new_number > max_num_bbox:
new_number = max_num_bbox
# prompt type a
if global_seq.split(';')[5].find('[') == -1:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
coords = re.findall(re.compile(r'[\[](.*?)[]]', re.S), global_seq)
objects = global_seq.split(';')[5].split(',')
objects = ' '.join(['[ ' + objects[i] + coords[i] + ']' for i in range(len(coords))])
seq_prompt = '; '.join([gen_type, data_type, instance_size, str(new_number), str(num_keypoint), objects])
# prompt type b
else:
global_seq = global_seq.replace('[CLS]', '').replace('[SEP]', '')
seq_list = global_seq.split(';')
seq_list[3] = str(new_number)
seq_prompt = ';'.join(seq_list)
# import ipdb;ipdb.set_trace()
print("input prompt: \n", seq_prompt)
with torch.no_grad():
sequence = gen_sequence(visorgpt_args, visorgpt_model, seq_prompt)
torch.cuda.empty_cache()
assert isinstance(sequence, list)
try:
cond_mask, cond_json = gen_cond_mask(sequence, ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
except:
cond_mask, cond_json = gen_cond_mask(sequence, not ctn)
if gen_type == 'key point':
ori_sequence = cond_json[2]['sequences'][0][0] + '[SEP]'
elif gen_type == 'box':
ori_sequence = cond_json[0]['sequences'][0][0] + '[SEP]'
elif gen_type == 'mask':
ori_sequence = cond_json[1]['sequences'][0][0] + '[SEP]'
ret_img = Image.fromarray(cond_mask)
if not gen_type == 'mask':
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=True),
text_container: cond_json,
sequence_container: ori_sequence
}
else:
return {
result_gallery: [ret_img],
raw_sequence: gr.update(value=ori_sequence, visible=True),
images_button: gr.update(visible=False),
text_container: cond_json,
sequence_container: ori_sequence
}
def generate_images(gen_type,
num_samples,
ddim_steps,
object_prompt,
seed,
global_text,
global_seq):
if gen_type == 'key point':
data = global_text[2]['keypoints']
idx = np.arange(len(data))
split_idx = list(np.array_split(idx, 1)[0])
for idx in tqdm(split_idx):
item = data[idx]
keypoint_list = []
for ins in item:
kv = list(ins.items())[0]
keypoint = (np.array(kv[1])).tolist()
keypoint_list.append(keypoint)
with torch.no_grad():
ret_img = control_infer(model=control_model,
ddim_sampler=ddim_sampler,
keypoint_list=keypoint_list,
prompt=object_prompt.strip(),
num_samples=num_samples,
ddim_steps=ddim_steps,
seed=seed)
torch.cuda.empty_cache()
elif gen_type == 'box':
data = global_text[0]['bboxes']
with torch.no_grad():
ret_img = gligen_infer(model=g_model,
autoencoder=g_autoencoder,
text_encoder=g_text_encoder,
diffusion=g_diffusion,
config=g_config,
grounding_tokenizer_input=g_grounding_tokenizer_input,
context_prompt=object_prompt.strip(),
bbox_lists=data,
ddim_steps=ddim_steps,
batch_size=num_samples,
seed=seed)
torch.cuda.empty_cache()
if not gen_type == 'mask':
return {
result_gallery: ret_img,
text_container: global_text,
sequence_container: global_seq
}
else:
return {
raw_sequence: "sequence to mask is not supported yet :)",
text_container: global_text,
sequence_container: global_seq
}
def object_name_inbox_fn(gen_type):
if gen_type == 'key point':
return {
object_name_inbox: gr.update(visible=False),
data_type: gr.update(choices=['multiple instances']),
images_button: gr.update(value='Synthesize images using ControlNet'),
ddim_steps: gr.update(value=20),
object_prompt: gr.update(placeholder='in suit'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
sequence_container: None
}
elif gen_type == 'box':
return {
object_name_inbox: gr.update(visible=True, value='person; frisbee'),
data_type: gr.update(choices=['multiple instances', 'object centric']),
images_button: gr.update(value='Synthesize images using GLIGEN'),
ddim_steps: gr.update(value=50),
object_prompt: gr.update(placeholder='man and frisbee'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
sequence_container: None
}
elif gen_type == 'mask':
return {
object_name_inbox: gr.update(visible=True,
label="MS COCO categories to be generated (separated by semicolon)", value='bottle; cup'),
data_type: gr.update(choices=['multiple instances']),
images_button: gr.update(value='Synthesize images using GLIGEN'),
ddim_steps: gr.update(value=50),
object_prompt: gr.update(placeholder='bottle and cup'),
num_instance: gr.update(visible=True, minimum=1, maximum=8, value=2, step=1),
sequence_container: None
}
def instance_type_change_fn(data_type):
if data_type == 'multiple instances':
return {
md_title: gr.update(visible=True),
num_continuous_gen: gr.update(visible=True),
continuous_btn: gr.update(visible=True),
object_name_inbox: gr.update(label="MS COCO categories to be generated (separated by semicolon)", value='person; frisbee'),
object_prompt: gr.update(placeholder='man and frisbee'),
num_instance: gr.update(visible=True, minimum=1, maximum=16, value=2, step=1),
}
elif data_type == 'object centric':
return {
md_title: gr.update(visible=False),
num_continuous_gen: gr.update(visible=False),
continuous_btn: gr.update(visible=False),
object_name_inbox: gr.update(label="ImageNet-1K categories to be generated", value='great white shark'),
object_prompt: gr.update(placeholder='great white shark'),
num_instance: gr.update(visible=False, value=1),
}
block = gr.Blocks()
with block:
text_container = gr.State()
sequence_container = gr.State()
gr.Markdown('<div align=center> <img src="file/visorgpt_title_all.jpg" width = "100%" height = "100%" /> </div>')
with gr.Row():
with gr.Column():
gr.Markdown("### Params to generate sequences")
gen_type = gr.inputs.Dropdown(choices=['key point', 'box', 'mask'], type='value', default='key point', label='Anotation Type')
data_type = gr.inputs.Dropdown(choices=['multiple instances'], type='value', default='multiple instances', label='Data Type')
instance_size = gr.inputs.Dropdown(choices=['small', 'medium', 'large'], type='value', default='large', label='Instance Size')
num_instance = gr.Slider(label="Number of instances per image", minimum=1, maximum=16, value=2, step=1)
object_name_inbox = gr.Textbox(label="MS COCO categories to be generated (separated by semicolon)", placeholder="person; frisbee", visible=False)
sequence_button = gr.Button(value="Customize sequential output")
md_title = gr.Markdown("### Continuous generation (Optional)")
num_continuous_gen = gr.Slider(label="Add instances to the current scene", minimum=1, maximum=16, value=1, step=1)
continuous_btn = gr.Button(value="Add instances to the current scene")
gr.Markdown("### Params to synthesize images")
object_prompt = gr.Textbox(label="Context Prompt", placeholder="in suit", visible=True)
num_samples = gr.Slider(label="Batch Size", minimum=1, maximum=36, value=1, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
images_button = gr.Button(value="Synthesize images using ControlNet", visible=False)
with gr.Column():
raw_sequence = gr.Textbox(label="Raw Sequence", visible=False)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto', preview=True)
gen_type.change(object_name_inbox_fn, inputs=[gen_type],
outputs=[object_name_inbox, data_type, images_button, ddim_steps, object_prompt, num_instance, sequence_container])
data_type.change(instance_type_change_fn, inputs=[data_type],
outputs=[md_title, num_continuous_gen, continuous_btn, object_name_inbox, object_prompt, num_instance])
ips = [gen_type, data_type, instance_size, num_instance, object_name_inbox]
sequence_button.click(fn=generate_sequence, inputs=ips, outputs=[result_gallery, raw_sequence, images_button, text_container, sequence_container])
ips = [gen_type, data_type, instance_size, num_instance, object_name_inbox, num_continuous_gen, sequence_container]
continuous_btn.click(fn=add_contents, inputs=ips, outputs=[result_gallery, raw_sequence, images_button, text_container, sequence_container])
ips = [gen_type, num_samples, ddim_steps, object_prompt, seed, text_container, sequence_container]
images_button.click(fn=generate_images, inputs=ips, outputs=[result_gallery, raw_sequence, text_container, sequence_container])
block.launch(server_name='0.0.0.0', server_port=10086, debug=False, share=False)