forked from UMich-CURLY/LatentBKI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpublish_map.py
187 lines (153 loc) · 6.57 KB
/
publish_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import rospy
import yaml
import os
import numpy as np
import torch
import roslib; roslib.load_manifest('visualization_marker_tutorials')
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from visualization_msgs.msg import Marker
from visualization_msgs.msg import MarkerArray
from geometry_msgs.msg import Point32
from std_msgs.msg import ColorRGBA
# view variance map
latent_map = np.load("/Users/multyxu/Desktop/Programming/LatentBKI/Results/5L/global_map_latent.npy")
category_map = np.load("/Users/multyxu/Desktop/Programming/LatentBKI/Results/5L/global_map.npy")
# sampled variance map
# latent_map = torch.load("/Users/multyxu/Desktop/Programming/LatentBKI/Results/5L/global_map_variance.pt").numpy()
# category_map = torch.load("/Users/multyxu/Desktop/Programming/LatentBKI/Results/5L/global_map_category.pt").numpy()
def create_marker(marker_ns, xyz, value, min_dim, max_dim, grid_dims, colors):
'''
xyz: (N, 3)
value: (N, )
'''
marker = Marker()
marker.id = 1
marker.ns = "Global_Semantic_Map" #
marker.ns = marker_ns
marker.header.frame_id = "map" # change this to match model + scene name LMSC_000001
marker.type = marker.CUBE_LIST
marker.action = marker.ADD
marker.header.stamp = rospy.Time.now()
marker.pose.orientation.x = 0.0
marker.pose.orientation.y = 0.0
marker.pose.orientation.z = 0.0
marker.pose.orientation.w = 1
marker.scale.x = (max_dim[0] - min_dim[0]) / grid_dims[0]
marker.scale.y = (max_dim[1] - min_dim[1]) / grid_dims[1]
marker.scale.z = (max_dim[2] - min_dim[2]) / grid_dims[2]
for i in range(xyz.shape[0]):
point = Point32()
color = ColorRGBA()
point.x = xyz[i, 0]
point.y = xyz[i, 1]
point.z = xyz[i, 2]
color.r, color.g, color.b, color.a = colors(value[i])
marker.points.append(point)
marker.colors.append(color)
return marker
def create_semantic_marker(global_map, num_class, min_dim, max_dim, grid_dims):
'''
global_map: (N, 3+1+1)
'''
markerArray = MarkerArray()
cmap = plt.cm.get_cmap('jet', num_class)
listed_cmap = ListedColormap(cmap(np.arange(num_class)))
print("Creating marker for semantic with map shape of", global_map.shape)
semantic_labels = global_map[:,3].astype(np.int32).reshape(-1,)
centroids = global_map[:, :3]
marker = create_marker("Global_Semantic_Map", centroids, semantic_labels, min_dim, max_dim, grid_dims, listed_cmap)
markerArray.markers.append(marker)
return markerArray
def create_variance_marker(global_map, min_dim, max_dim, grid_dims):
markerArray = MarkerArray()
cmap = plt.cm.get_cmap('viridis', 11)
listed_cmap = ListedColormap(cmap(np.arange(11)))
print("Creating marker for variance with map shape of", global_map.shape)
xyz = global_map[:,:3]
variance = global_map[:, 3]
variance -= np.min(variance)
variance /= np.max(variance) # make it between 0-1
variance = (variance / 0.1).astype(np.int32)
marker = create_marker("Global_Variance_Map", xyz, variance, min_dim, max_dim, grid_dims, listed_cmap)
markerArray.markers.append(marker)
return markerArray
############## main script ################
# TODO: change these
MODEL_NAME = "LatentBKI_default"
SAMPLEED = True # view sampled variance map
D_OP = True # view variance in latent space
MAP_DIR = "/Users/multyxu/Desktop/Programming/LatentBKI/Results/gT"
# TODO: change these
publisher = rospy.Publisher('visualization_marker_array', MarkerArray, queue_size=10)
rospy.init_node('register')
# load map from memory
if SAMPLEED:
# TODO: need to preprocess the variance map
latent_map = torch.load(os.path.join(MAP_DIR,"global_map_variance.pt")).numpy()
category_map = torch.load(os.path.join(MAP_DIR,"global_map_category.pt")).numpy()
else:
latent_map = np.load(os.path.join(MAP_DIR,"global_map_latent.npy"))
category_map = np.load(os.path.join(MAP_DIR,"global_map.npy"))
model_params_file = os.path.join(os.getcwd(), "Config", MODEL_NAME + ".yaml")
with open(model_params_file, "r") as stream:
try:
model_params = yaml.safe_load(stream)
DATASET = model_params["dataset"]
GRID_PARAMS = model_params["grid_params"]
MIN_BOUND = np.array(GRID_PARAMS["min_bound"])
MAX_BOUND = np.array(GRID_PARAMS["max_bound"])
GRID_SIZE = np.array(GRID_PARAMS["grid_size"])
except yaml.YAMLError as exc:
print(exc)
data_params_file = os.path.join(os.getcwd(), "Config", DATASET + ".yaml")
with open(data_params_file, "r") as stream:
try:
data_params = yaml.safe_load(stream)
FEATURE_SIZE = data_params["feature_size"]
PCA_PATH = data_params['pca_path']
NUM_CLASS = data_params['num_classes']
except yaml.YAMLError as exc:
print(exc)
# mask out ceiling
if DATASET == "mp3d":
mask = category_map[:,3] != 17 # in MP3D, 17 is ceiling
latent_map = latent_map[mask]
category_map = category_map[mask]
# process variance
if SAMPLEED:
xyz = latent_map[:,:3]
variance = latent_map[:,4].reshape(-1,1)
else:
# convert into Multivariate Student-t Distribution per voxel
pred_confidence = latent_map[:,-1].reshape(-1,1)
pred_variance = latent_map[:,3+64: 3+64*2]
# mean remain the same
t_variance = (pred_confidence + 1) / (pred_confidence * pred_confidence) * pred_variance
t_mean = latent_map[:, 3:3+64]
t_v = pred_confidence
confidence_mask = (t_v > 2).reshape(-1) # variance is effective when v > 2?
t_variance = t_variance[confidence_mask]
t_mean = t_mean[confidence_mask]
t_v = t_v[confidence_mask]
t_xyz = latent_map[:,:3][confidence_mask]
if D_OP:
t_variance_norm = np.sum(np.log(t_variance), axis=-1, keepdims=True) / t_variance.shape[-1]
t_variance_norm = np.exp(t_variance_norm)
else:
# E-OP
t_variance_norm = np.max(np.abs(t_variance), axis=-1, keepdims=True)
xyz = t_xyz
variance = t_variance_norm
print(variance.max(), variance.min(), variance.mean())
# cut off points for better visuals
sorted_uncertainty = sorted(variance)
value = sorted_uncertainty[int(len(sorted_uncertainty) * 0.95)] # ascending order
variance[variance > value] = value
variance_map = np.hstack((xyz, variance))
semantic_marker = create_semantic_marker(category_map, NUM_CLASS, MIN_BOUND, MAX_BOUND, GRID_SIZE)
variance_marker = create_variance_marker(variance_map, MIN_BOUND, MAX_BOUND, GRID_SIZE)
while not rospy.is_shutdown():
publisher.publish(semantic_marker)
publisher.publish(variance_marker)
rospy.sleep(3)