-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtfilter.py
63 lines (54 loc) · 1.56 KB
/
tfilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import random
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import NMF
def moving_window_matrix(x,window_size):
# Fork from https://qiita.com/bauer/items/48ef4a57ff77b45244b6
n = x.shape[0]
stride = x.strides[0]
return np.lib.stride_tricks.as_strided(x, shape=(n-window_size+1, window_size), strides=(stride,stride) ).copy()
def hsvd(x, window, rank):
m = moving_window_matrix(x, window)
u, s, vh = np.linalg.svd(m)
h = u[:,:rank] @ np.diag(s[:rank]) @ vh[:rank,:]
c = h[0,:]
c = np.append(c, h[1:,-1])
return c, x-c
def hnmf(x, window, rank, random_state = 0):
assert(np.min(x) > 0.0)
m = moving_window_matrix(x, window)
model = NMF(n_components=rank, init='random', random_state=random_state)
w = model.fit_transform(m)
h = model.components_
hankel = w @ h
c = hankel[0,:]
c = np.append(c, hankel[1:,-1])
return c, x-c
if __name__ == "__main__":
seed = 0
random.seed(seed)
np.random.seed(seed)
N = 500
x = np.sin(np.arange(N) * np.pi/50.0)
x = x + np.random.normal(0, 0.3, size=N)
plt.plot(x, label='raw')
plt.legend()
plt.savefig('raw.png')
plt.clf()
window = 100
rank = 2
l, h = hsvd(x, window, rank)
plt.plot(l, label='low')
plt.legend()
plt.savefig('low.png')
plt.clf()
plt.plot(h, label='high')
plt.legend()
plt.savefig('high.png')
plt.clf()
plt.plot(x, label='raw')
plt.plot(l, label='low')
plt.plot(h, label='high')
plt.legend()
plt.savefig('summary.png')
plt.clf()