-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
32 lines (29 loc) · 831 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch.nn as nn
import torchvision
N_CLASSES = 14
CLASS_NAMES = [
'Atelectasis',
'Cardiomegaly',
'Effusion',
'Infiltration',
'Mass',
'Nodule',
'Pneumonia',
'Pneumothorax',
'Consolidation',
'Edema',
'Emphysema',
'Fibrosis',
'Pleural_Thickening',
'Hernia']
class DenseNet121(nn.Module):
def __init__(self, out_size):
super(DenseNet121, self).__init__()
self.densenet121 = torchvision.models.densenet121(pretrained=True)
num_features = self.densenet121.classifier.in_features
self.densenet121.classifier = nn.Sequential(
nn.Linear(num_features, out_size),
nn.Sigmoid())
def forward(self, x):
x = self.densenet121(x)
return x