-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
57 lines (41 loc) · 1.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.nn as nn
def double_conv(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.ReLU(inplace=True),
)
class UNet(nn.Module):
def __init__(self, n_class):
super().__init__()
self.dconv_down1 = double_conv(3, 64)
self.dconv_down2 = double_conv(64, 128)
self.dconv_down3 = double_conv(128, 256)
self.dconv_down4 = double_conv(256, 512)
self.maxpool = nn.MaxPool2d(2)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.dconv_up3 = double_conv(256 + 512, 256)
self.dconv_up2 = double_conv(128 + 256, 128)
self.dconv_up1 = double_conv(128 + 64, 64)
self.conv_last = nn.Conv2d(64, n_class, 1)
def forward(self, x):
conv1 = self.dconv_down1(x)
x = self.maxpool(conv1)
conv2 = self.dconv_down2(x)
x = self.maxpool(conv2)
conv3 = self.dconv_down3(x)
x = self.maxpool(conv3)
x = self.dconv_down4(x)
x = self.upsample(x)
x = torch.cat([x, conv3], dim=1)
x = self.dconv_up3(x)
x = self.upsample(x)
x = torch.cat([x, conv2], dim=1)
x = self.dconv_up2(x)
x = self.upsample(x)
x = torch.cat([x, conv1], dim=1)
x = self.dconv_up1(x)
out = self.conv_last(x)
return out