-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_contentatscale_detect.py
207 lines (178 loc) · 9.4 KB
/
test_contentatscale_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
import pytest, os, jsonlines, csv
from warnings import warn
from contentatscale_detect import run_on_file_chunked, run_on_text_chunked
AI_SAMPLE_DIR = 'samples/llm-generated/'
HUMAN_SAMPLE_DIR = 'samples/human-generated/'
MIN_LEN = 150
NUM_JSONL_SAMPLES = 500
ai_files = os.listdir(AI_SAMPLE_DIR)
human_files = os.listdir(HUMAN_SAMPLE_DIR)
CONFIDENCE_THRESHOLD : float = 0.00 # What confidence to treat as error vs warning
def test_training_file(record_property):
res = run_on_file_chunked('ai-generated.txt')
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', 'The training corpus should always be detected as AI-generated... since it is (score: ' + str(round(score, 8)) + ')'
@pytest.mark.parametrize('f', human_files)
def test_human_samples(f, record_property):
res = run_on_file_chunked(HUMAN_SAMPLE_DIR + f)
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
if score > CONFIDENCE_THRESHOLD:
assert classification == 'Human', f + ' is a human-generated file, misclassified as AI-generated with confidence ' + str(round(score, 8))
else:
if classification != 'Human':
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
else:
warn("Unable to confidently classify: " + f)
@pytest.mark.parametrize('f', ai_files)
def test_llm_sample(f, record_property):
res = run_on_file_chunked(AI_SAMPLE_DIR + f)
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
if score > CONFIDENCE_THRESHOLD:
assert classification == 'AI', f + ' is an LLM-generated file, misclassified as human-generated with confidence ' + str(round(score, 8))
else:
if classification != 'AI':
warn("Misclassified " + f + " with score of: " + str(round(score, 8)))
else:
warn("Unable to confidently classify: " + f)
HUMAN_JSONL_FILE = 'samples/webtext.test.jsonl'
human_samples = []
with jsonlines.open(HUMAN_JSONL_FILE) as reader:
for obj in reader:
human_samples.append(obj)
@pytest.mark.parametrize('i', human_samples[0:NUM_JSONL_SAMPLES])
def test_human_jsonl(i, record_property):
res = run_on_text_chunked(i.get('text', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' (len: ' + str(i.get('length', -1)) + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
# AI_JSONL_FILE = 'samples/xl-1542M.test.jsonl'
# ai_samples = []
# with jsonlines.open(AI_JSONL_FILE) as reader:
# for obj in reader:
# ai_samples.append(obj)
# @pytest.mark.parametrize('i', ai_samples[0:NUM_JSONL_SAMPLES])
# def test_gpt2_jsonl(i, record_property):
# res = run_on_text_chunked(i.get('text', ''))
# if res is None:
# pytest.skip('Unable to classify')
# (classification, score) = res
# record_property("score", str(score))
# assert classification == 'AI', AI_JSONL_FILE + ':' + str(i.get('id')) + ' (text: ' + i.get('text', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
# GPT3_JSONL_FILE = 'samples/GPT-3-175b_samples.jsonl'
# gpt3_samples = []
# with jsonlines.open(GPT3_JSONL_FILE) as reader:
# for o in reader:
# for l in o.split('<|endoftext|>'):
# if len(l) >= MIN_LEN:
# gpt3_samples.append(l)
# @pytest.mark.parametrize('i', gpt3_samples[0:NUM_JSONL_SAMPLES])
# def test_gpt3_jsonl(i, record_property):
# res = run_on_text_chunked(i)
# if res is None:
# pytest.skip('Unable to classify')
# (classification, score) = res
# record_property("score", str(score))
# assert classification == 'AI', GPT3_JSONL_FILE[0:250] + ' is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
NEWS_JSONL_FILE = 'samples/news.jsonl'
news_samples = []
with jsonlines.open(NEWS_JSONL_FILE) as reader:
for obj in reader:
news_samples.append(obj)
@pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
def test_humannews_jsonl(i, record_property):
res = run_on_text_chunked(i.get('human', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', NEWS_JSONL_FILE + ' is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
@pytest.mark.parametrize('i', news_samples[0:NUM_JSONL_SAMPLES])
def test_chatgptnews_jsonl(i, record_property):
res = run_on_text_chunked(i.get('chatgpt', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', NEWS_JSONL_FILE + ' is a AI-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
CHEAT_HUMAN_JSONL_FILE = 'samples/ieee-init.jsonl'
ch_samples = []
with jsonlines.open(CHEAT_HUMAN_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
ch_samples.append(obj)
@pytest.mark.parametrize('i', ch_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_human_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'Human', CHEAT_HUMAN_JSONL_FILE + ':' + str(i.get('id')) + ' [' + str(len(i.get('abstract', ''))) + '] (title: ' + i.get('title', "").replace('\n', ' ')[:15] + ') is a human-generated sample, misclassified as AI-generated with confidence ' + str(round(score, 8))
CHEAT_GEN_JSONL_FILE = 'samples/ieee-chatgpt-generation.jsonl'
cg_samples = []
with jsonlines.open(CHEAT_GEN_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
cg_samples.append(obj)
@pytest.mark.parametrize('i', cg_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_generation_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', CHEAT_GEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
CHEAT_POLISH_JSONL_FILE = 'samples/ieee-chatgpt-polish.jsonl'
cp_samples = []
with jsonlines.open(CHEAT_POLISH_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
cp_samples.append(obj)
@pytest.mark.parametrize('i', cp_samples[0:NUM_JSONL_SAMPLES])
def test_cheat_polish_jsonl(i, record_property):
res = run_on_text_chunked(i.get('abstract', ''))
if res is None:
pytest.skip('Unable to classify')
(classification, score) = res
record_property("score", str(score))
assert classification == 'AI', CHEAT_POLISH_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
CHEAT_VICUNAGEN_JSONL_FILE = 'samples/ieee-vicuna-generation.jsonl'
vg_samples = []
with jsonlines.open(CHEAT_VICUNAGEN_JSONL_FILE) as reader:
for obj in reader:
if len(obj.get('abstract', '')) >= MIN_LEN:
vg_samples.append(obj)
@pytest.mark.parametrize('i', vg_samples[0:NUM_JSONL_SAMPLES])
def test_vicuna_generation_jsonl(i, record_property):
(classification, score) = run_on_text_chunked(i.get('abstract', ''))
record_property("score", str(score))
assert classification == 'AI', CHEAT_VICUNAGEN_JSONL_FILE + ':' + str(i.get('id')) + ' (title: ' + i.get('title', "").replace('\n', ' ')[:50] + ') is an LLM-generated sample, misclassified as human-generated with confidence ' + str(round(score, 8))
GPTZERO_EVAL_FILE = 'samples/gptzero_eval.csv'
ge_samples = []
with open(GPTZERO_EVAL_FILE) as fp:
csvr = csv.DictReader(fp)
for obj in csvr:
if len(obj.get('Document', '')) >= MIN_LEN:
ge_samples.append(obj)
@pytest.mark.parametrize('i', list(filter(lambda x: x.get('Label') == 'AI', ge_samples))[0:NUM_JSONL_SAMPLES])
def test_gptzero_eval_dataset_ai(i, record_property):
(classification, score) = run_on_text_chunked(i.get('Document', ''))
record_property("score", str(score))
assert classification == i.get('Label'), GPTZERO_EVAL_FILE + ':' + str(i.get('Index')) + ' was misclassified with confidence ' + str(round(score, 8))
@pytest.mark.parametrize('i', list(filter(lambda x: x.get('Label') == 'Human', ge_samples))[0:NUM_JSONL_SAMPLES])
def test_gptzero_eval_dataset_human(i, record_property):
(classification, score) = run_on_text_chunked(i.get('Document', ''))
record_property("score", str(score))
assert classification == i.get('Label'), GPTZERO_EVAL_FILE + ':' + str(i.get('Index')) + ' was misclassified with confidence ' + str(round(score, 8))