forked from zjyyyy/HGFM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.py
242 lines (172 loc) · 7.28 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence,pad_packed_sequence
import Config
def get_attention(q, k, v, attn_mask=None):
"""
:param : (batch, seq_len, seq_len)
:return: (batch, seq_len, seq_len)
"""
attn = torch.matmul(q, k.transpose(1, 2))
if attn_mask is not None:
attn.data.masked_fill_(attn_mask, -1e10)
attn = F.softmax(attn, dim=-1)
output = torch.matmul(attn, v)
return output, attn
def get_attn_pad_mask(seq_q, seq_k):
assert seq_q.dim() == 2 and seq_k.dim() == 2
pad_attn_mask = torch.matmul(seq_q.unsqueeze(2).float(), seq_k.unsqueeze(1).float())
pad_attn_mask = pad_attn_mask.eq(Config.PAD) # b_size x 1 x len_k
#print(pad_attn_mask)
return pad_attn_mask.cuda(seq_k.device)
# Pad for utterances with variable lengths and maintain the order of them after GRU
class GRUencoder(nn.Module):
def __init__(self, d_emb, d_out, num_layers):
super(GRUencoder, self).__init__()
self.gru = nn.GRU(input_size=d_emb, hidden_size=d_out,
bidirectional=True, num_layers=num_layers)
def forward(self, sent, sent_lens):
"""
:param sent: torch tensor, batch_size x seq_len x d_rnn_in
:param sent_lens: numpy tensor, batch_size x 1
:return:
"""
device = sent.device
# seq_len x batch_size x d_rnn_in
sent_embs = sent.transpose(0,1)
# sort by length
s_lens, idx_sort = np.sort(sent_lens)[::-1], np.argsort(-sent_lens)
idx_unsort = np.argsort(idx_sort)
idx_sort = torch.from_numpy(idx_sort).cuda(device)
s_embs = sent_embs.index_select(1, Variable(idx_sort))
# padding
s_lens = s_lens.copy()
sent_packed = pack_padded_sequence(s_embs, s_lens)
sent_output = self.gru(sent_packed)[0]
sent_output = pad_packed_sequence(sent_output, total_length=sent.size(1))[0]
# unsort by length
idx_unsort = torch.from_numpy(idx_unsort).cuda(device)
sent_output = sent_output.index_select(1, Variable(idx_unsort))
# batch x seq_len x 2*d_out
output = sent_output.transpose(0,1)
return output
# Utterance encoder with higru-sf
class UttEncoder(nn.Module):
def __init__(self, d_word_vec, d_h1):
super(UttEncoder, self).__init__()
self.encoder = GRUencoder(d_word_vec, d_h1, num_layers=1)
self.d_input = 4 * d_h1 + d_word_vec
self.output1 = nn.Sequential(
nn.Linear(self.d_input, d_h1),
nn.Tanh()
)
def forward(self, sents, lengths, sa_mask=None):
"""
:param sents: batch x seq_len x 2*d_h1
:param lengths: numpy array 1 x batch
:return: batch x d_h1
"""
w_context = self.encoder(sents, lengths)
w_lcont, w_rcont = w_context.chunk(2, -1)
sa_lcont, _ = get_attention(w_lcont, w_lcont, w_lcont, attn_mask=sa_mask)
sa_rcont, _ = get_attention(w_rcont, w_rcont, w_rcont, attn_mask=sa_mask)
combined = [sa_lcont, w_lcont, sents, w_rcont, sa_rcont]
combined = torch.cat(combined, dim=-1)
output1 = self.output1(combined)
output = torch.max(output1, dim=1)[0]
return output
class UttGRU(nn.Module):
def __init__(self, d_raw, d_h1, d_h2, d_fc, class_num):
super(UttGRU, self).__init__()
self.d_h2 = d_h2
self.uttenc = UttEncoder(d_raw, d_h1)
self.dropout_in = nn.Dropout(0.5)
self.d_input = d_h1
self.output1 = nn.Sequential(
nn.Linear(self.d_input, d_h2),
nn.Tanh(),
nn.Linear(d_h2, d_fc),
nn.Dropout(0.5)
)
self.dropout_mid = nn.Dropout(0.5)
self.num_classes = class_num
self.classifier = nn.Sequential(
nn.Linear(d_fc, self.num_classes)
)
def forward(self, sents, lens, mask_len):
sa_mask = get_attn_pad_mask(mask_len, mask_len)
s_embed = self.uttenc(sents, lens, sa_mask)
s_embed = self.dropout_in(s_embed)
output1 = self.output1(s_embed)
output1 = self.dropout_mid(output1)
classification = self.classifier(output1)
pred_scores = F.log_softmax(classification, dim=1)
return pred_scores
class Raw_Audio(nn.Module):
def __init__(self, d_raw, d_h1, d_h2, d_fc, class_num):
super(Raw_Audio, self).__init__()
self.d_h2 = d_h2
self.uttenc = UttEncoder(d_raw, d_h1)
self.dropout_in = nn.Dropout(0.5)
self.contenc = nn.GRU(d_h1, d_h2, num_layers=1, bidirectional=True)
self.d_input = 4 * d_h2 + d_h1
self.output1 = nn.Sequential(
nn.Linear(self.d_input, d_h2),
nn.Tanh(),
nn.Linear(d_h2, d_fc),
nn.Dropout(0.5)
)
self.dropout_mid = nn.Dropout(0.5)
self.num_classes = class_num
self.classifier = nn.Sequential(
nn.Linear(d_fc, self.num_classes)
)
def forward(self, sents, lens, mask_len):
sa_mask = get_attn_pad_mask(mask_len, mask_len)
s_embed = self.uttenc(sents, lens, sa_mask)
s_embed = self.dropout_in(s_embed)
s_context = self.contenc(s_embed.unsqueeze(1))[0]
s_context = s_context.transpose(0,1).contiguous()
s_lcont, s_rcont = s_context.chunk(2, -1)
SA_lcont, _ = get_attention(s_lcont, s_lcont, s_lcont)
SA_rcont, _ = get_attention(s_rcont, s_rcont, s_rcont)
Combined = [SA_lcont, s_lcont, s_embed.unsqueeze(0), s_rcont, SA_rcont]
Combined = torch.cat(Combined, dim=-1)
output1 = self.output1(Combined.squeeze(0))
output1 = self.dropout_mid(output1)
classification = self.classifier(output1)
pred_scores = F.log_softmax(classification, dim=1)
return pred_scores
class O_Audio(nn.Module):
def __init__(self, d_op, d_h1, d_fc, class_num):
super(O_Audio, self).__init__()
self.contenc = nn.GRU(d_op, d_h1, num_layers=1, bidirectional=True)
self.d_input = 4 * d_h1 + d_h1
self.output1 = nn.Sequential(
nn.Linear(self.d_input, d_h1),
nn.Tanh(),
nn.Linear(d_h1, d_fc),
nn.Dropout(0.5)
)
self.dropout_mid = nn.Dropout(0.5)
self.num_classes = class_num
self.classifier = nn.Sequential(
nn.Linear(d_fc, self.num_classes)
)
def forward(self, sents):
s_context = self.contenc(sents.unsqueeze(1))[0]
s_context = s_context.transpose(0,1).contiguous()
s_lcont, s_rcont = s_context.chunk(2, -1)
SA_lcont, _ = get_attention(s_lcont, s_lcont, s_lcont)
SA_rcont, _ = get_attention(s_rcont, s_rcont, s_rcont)
Combined = [SA_lcont, s_lcont, sents.unsqueeze(0), s_rcont, SA_rcont]
Combined = torch.cat(Combined, dim=-1)
output1 = self.output1(Combined.squeeze(0))
output1 = self.dropout_mid(output1)
classification = self.classifier(output1)
pred_scores = F.log_softmax(classification, dim=1)
return pred_scores