-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathopticflow.py
178 lines (124 loc) · 4.97 KB
/
opticflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#####################################################################
# Example : perform live visualization of optic flow from a video file
# specified on the command line (e.g. python FILE.py video_file) or from
# an attached web camera
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2017 School of Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import numpy as np
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# draw optic flow visualization on image using a given step size for
# the line glyphs that show the flow vectors on the image
def draw_flow(img, flow, step=8):
h, w = img.shape[:2]
y, x = np.mgrid[step / 2:h:step, step /
2:w:step].reshape(2, -1).astype(int)
fx, fy = flow[y, x].T
lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.polylines(vis, lines, 0, (0, 255, 0))
for (x1, y1), (x2, y2) in lines:
cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
return vis
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Dense Optic Flow" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
# if video file successfully open then read an initial frame from video
if (cap.isOpened):
ret, frame = cap.read()
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(frame, (0, 0), fx=args.rescale, fy=args.rescale)
# convert image to grayscale to be previous frame
prevgray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# convert image to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# compute dense optic flow using technique of Farneback 2003
# parameters from example (OpenCV 3.2):
# https://github.com/opencv/opencv/blob/master/samples/python/opt_flow.py
flow = cv2.calcOpticalFlowFarneback(
prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
prevgray = gray
# display image with optic flow overlay
cv2.imshow(window_name, draw_flow(gray, flow))
# start the event loop - essential
# wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(40) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################