-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathsqueezenet.py
261 lines (188 loc) · 7.82 KB
/
squeezenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
##########################################################################
# Example : perform live display of squeezenet CNN classification from a video
# file specified on the command line (e.g. python FILE.py video_file) or from
# an attached web camera
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2019 Toby Breckon, Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# Based heavily on the example provided at:
# https://github.com/opencv/opencv/blob/master/samples/dnn/classification.py
##########################################################################
# To use download the following files:
# https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt
# -> classification_classes_ILSVRC2012.txt
# https://github.com/forresti/SqueezeNet/raw/master/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel
# -> squeezenet_v1.1.caffemodel
# https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/squeezenet_v1.1.prototxt
# -> squeezenet_v1.1.prototxt
##########################################################################
import cv2
import argparse
import sys
import math
import numpy as np
##########################################################################
# dummy on trackbar callback function
def on_trackbar(val):
return
##########################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
"-use",
"--target",
type=str,
choices=['cpu', 'gpu', 'opencl'],
help="select computational backend",
default='gpu')
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
##########################################################################
# define display window name
window_name = "SqueezeNet Image Classification - Live" # window name
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
trackbarName = 'reporting confidence > (x 0.01)'
cv2.createTrackbar(trackbarName, window_name, 50, 100, on_trackbar)
##########################################################################
# Load names of class labels
classes = None
with open("classification_classes_ILSVRC2012.txt", 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
##########################################################################
# Load CNN model
net = cv2.dnn.readNet(
"squeezenet_v1.1.caffemodel",
"squeezenet_v1.1.prototxt",
'caffe')
# set up compute target as one of [GPU, OpenCL, CPU]
if (args.target == 'gpu'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
elif (args.target == 'opencl'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
else:
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
##########################################################################
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if camera /video file successfully open then read frame
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
#######################################################################
# squeezenet:
# model: "squeezenet_v1.1.caffemodel"
# config: "squeezenet_v1.1.prototxt"
# mean: [0, 0, 0]
# scale: 1.0
# width: 227
# height: 227
# rgb: false
# classes: "classification_classes_ILSVRC2012.txt
#######################################################################
# create a 4D tensor "blob" from a frame.
blob = cv2.dnn.blobFromImage(
frame, scalefactor=1.0, size=(
227, 227), mean=[
0, 0, 0], swapRB=False, crop=False)
# Run forward inference on the model
net.setInput(blob)
out = net.forward()
# get class label with a highest score from final softmax() layer
out = out.flatten()
classId = np.argmax(out)
confidence = out[classId]
# stop the timer and convert to ms. (to see how long processing takes
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# Display efficiency information
label = ('Inference time: %.2f ms' % stop_t) + \
(' (Framerate: %.2f fps' % (1000 / stop_t)) + ')'
cv2.putText(frame, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# get confidence threshold from track bar
confThreshold = cv2.getTrackbarPos(trackbarName, window_name) / 100
# if we are quite confidene about classification then dispplay
if (confidence > confThreshold):
# add predicted class.
label = '%s: %.4f' % (
classes[classId]
if classes else 'Class #%d' % classId, confidence)
cv2.putText(frame, label, (0, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image
cv2.imshow(window_name, frame)
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
# start the event loop - essential
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
##########################################################################