-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPreprocessingMonitoringCube.Rmd
99 lines (71 loc) · 2.67 KB
/
PreprocessingMonitoringCube.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
title: "Preprocessing of Monitoring Cube"
author: "Nick Jakuschona – n_jaku01@uni-muenster.de, Tom Niers – tom.niers@uni-muenster.de"
date: "24.3.2021"
output: html_document
---
```{r eval=FALSE}
#Load Data and create Data cube
#Data Preprocessing
library(gdalcubes)
library(magrittr)
gdalcubes_options(threads=8)
IMAGE_DIR = "data/L8_cropped" # please change
# image collection with metadata
col = create_image_collection(list.files(IMAGE_DIR, recursive = TRUE, pattern=".tif", full.names = TRUE), "L8_SR")
# only use pixels with the attribute "clear" and "water"
L8.clear_mask = image_mask("PIXEL_QA", values=c(322, 386, 834, 898, 1346, 324, 388, 836, 900, 1348), invert = TRUE)
# monthly data cube at 250m spatial resolution for calculating NDVIs
#the time span is higher than one timestamp here to cover also possible cloud free pixels
v1m = cube_view(srs="EPSG:3857", extent=list(left = -7370182, right = -7235182, top = -993877, bottom = -1096877, t0 ="2019-07-01", t1 = "2019-11-31"), dx=250, dy=250, dt="P1M", resampling = "average", aggregation = "median")
# calculate NDVI
L8.cube = raster_cube(col, v1m, L8.clear_mask)
L8.cube = select_bands(L8.cube, c("B04", "B05"))
L8.ndvi = apply_pixel(L8.cube, "(B05-B04)/(B05+B04)", "NDVI")
# Fill "NA" values with next observation
L8.filled = fill_time(L8.ndvi, "nocb")
```
```{r eval=FALSE}
#Save filled tiffs for each time step
times = dimension_values(L8.ndvi)$t
c=1
for(i in times){
print(i)
img= select_time(L8.filled, i)
write_tif(img, "data/MonitoringFilled",prefix = "MonitoringFilled_")
c = c+1
}
```
````{r eval=FALSE}
#Deseasonalizing
library(raster)
times = dimension_values(L8.ndvi)$t
c=1
#calculate the 0.95 qunatile of NDVI values for each time step
list = reduce_space(L8.filled, FUN = function(x) {
quantile(unlist(apply(x,1,function(x) x[!is.na(x)])), prob=c(0.95))
})
array = as_array(list)
percentile= as.list(array)
dir.create("data/MonitoringDeseasonalized")
#Divide all pixel values by the 0.95 NDVI quantile of the whole time step
for(i in times){
print(i)
fileName=paste0("data/MonitoringFilled/MonitoringFilled_", i ,".tif")
r = raster(fileName)
dimension= dim(r)
ex = raster::extent(r)
d=percentile[c]
#if percentile could not be calculated take the 0.95 percentile from previous time step
if(is.na(unlist(d))){
percentile[c]=percentile[c-1]
d=percentile[c-1]
}
draster = raster(ncol=dimension[2], nrow=dimension[1], xmn =ex@xmin, xmx= ex@xmax, ymn=ex@ymin, ymx=ex@ymax)
values(draster)=unlist(d)
imgNormalized = r/draster
fileName2=paste0("data/MonitoringDeseasonalized/Des_", i ,".tif")
writeRaster(imgNormalized, fileName2, overwrite=TRUE)
c = c+1
}
```