-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInfutor+Census_Analysis.py
487 lines (406 loc) · 15.2 KB
/
Infutor+Census_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import numpy as np
import pandas as pd
from infutor_census_analysis import *
for period in periods:
infutor_start, infutor_end = period['infutor interval']
census_year = period['census year']
df_moves = df_all_moves[
df_all_moves['date_left'].between(
*years_to_effdate(infutor_start, infutor_end)
)
]
area_results = {}
area_results[
"Total population at beginning of the period"
] = census_col_by_area(f'totalpop{census_year}', df_high_loss_areas)
area_results[
"Number of total moves that began in high-loss tracts"
] = agg_moves_by_area(df_moves.loc[:, 'high-loss', :], 'orig_fips')
area_results[
"Number of total moves that began in high-loss tracts and ended in the "
"same tract"
] = agg_moves_by_area(df_moves.loc[True, 'high-loss', :], 'orig_fips')
area_results[
"Number of total moves that began in high-loss tracts and ended in a "
"different high-loss tract"
] = agg_moves_by_area(
df_moves.loc[False, 'high-loss', 'high-loss'], 'orig_fips'
)
area_results[
"Number of total moves that began in the tract and ended outside LA or "
"Orange Counties"
] = agg_moves_by_area(df_moves.loc[:, 'high-loss', 'outside'], 'orig_fips')
area_results[
"Number of total moves that began in the tract and ended outside the "
"high-loss deciles"
] = agg_moves_by_area(
df_moves.loc[:, 'high-loss', ['LA/OC', 'outside']], 'orig_fips'
)
area_results[
"Interquartile range of all move distances out of high-loss tracts"
] = agg_moves_by_area(
df_moves.loc[False, 'high-loss', :],
'orig_fips',
calculate_iqr,
['dist'],
np.NaN
)
area_results[
"Interquartile range of move distances out of high-loss tracts that "
"end in LA or the OC"
] = agg_moves_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
'orig_fips',
calculate_iqr,
['dist'],
np.NaN
)
area_results[
"Mean distance of all moves out"
] = agg_moves_by_area(
df_moves.loc[False, 'high-loss', :],
'orig_fips',
'mean',
['dist'],
np.NaN
)
area_results[
"Mean distance of moves out that end in LA or the OC"
] = agg_moves_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
'orig_fips',
'mean',
['dist'],
np.NaN
)
area_results[
"Share of moves that stay within tract"
] = agg_moves_by_area(df_moves.loc[True, 'high-loss', :], 'orig_fips') \
/ agg_moves_by_area(df_moves.loc[:, 'high-loss', :], 'orig_fips')
area_results[
"Share of moves that stay within high-loss decile"
] = agg_moves_by_area(
df_moves.loc[:, 'high-loss', 'high-loss'], 'orig_fips'
) / agg_moves_by_area(df_moves.loc[:, 'high-loss', :], 'orig_fips')
area_results[
"Weighted average density of destination tracts for moves that end in "
"LA and Orange County but are not in high-loss decile"
] = weighted_average_by_area(
df_moves.loc[:, 'high-loss', 'LA/OC'],
'orig_fips',
'dest_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Median density of destination tracts for moves that end in LA and "
"Orange County but are not in high-loss decile"
] = median_by_area(
df_moves.loc[:, 'high-loss', 'LA/OC'],
'orig_fips',
'dest_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Weighted average ridership of destination tracts for moves that end "
"in LA and Orange County but are not in high-loss decile"
] = weighted_average_by_area(
df_moves.loc[:, 'high-loss', 'LA/OC'],
'orig_fips',
'dest_fips',
census_col_by_area(f'boardings{census_year}')
)
area_results[
"Median ridership of destination tracts for moves that end in LA "
"and Orange County but are not in high-loss decile"
] = median_by_area(
df_moves.loc[:, 'high-loss', 'LA/OC'],
'orig_fips',
'dest_fips',
census_col_by_area(f'boardings{census_year}')
)
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to tracts below a density of 16,000 out of high loss tracts that "
"end anywhere"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
lambda _: 16_000,
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(df_moves.loc[False, 'high-loss', :], 'orig_fips')
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to tracts below a density of 16,000 out of high loss tracts that "
"stay in LA and OC"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
lambda _: 16_000,
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']], 'orig_fips'
)
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to tracts below a density of 20k out of high loss tracts that "
"end anywhere"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
lambda _: 20_000,
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(df_moves.loc[False, 'high-loss', :], 'orig_fips')
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to tracts below a density of 20k out of high loss tracts that "
"stay in LA and OC"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
lambda _: 20_000,
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']], 'orig_fips'
)
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to a lower-density tract out of high loss tracts that end "
"anywhere"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
census_col_by_area(f'popdens{census_year}'),
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(df_moves.loc[False, 'high-loss', :], 'orig_fips')
area_results[
"Percent of moves out of high-loss tracts that end in LA or OC and "
"went to a lower-density tract out of high loss tracts that stay in LA "
"and OC"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
lambda orig, dest: dest < orig,
census_col_by_area(f'popdens{census_year}'),
census_col_by_area(f'popdens{census_year}')
),
'orig_fips'
) / agg_moves_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']], 'orig_fips'
)
area_results[
"The average change in population density of a move out of a high-loss "
"tract that end in LA or OC"
] = average_change_by_area(
df_moves.loc[False, 'high-loss', ['high-loss', 'LA/OC']],
'orig_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Number of total moves into the high-loss tracts"
] = agg_moves_by_area(df_moves.loc[False, :, 'high-loss'], 'dest_fips')
area_results[
"Number of total moves into the high-loss tracts for all in-moves that "
"aren't from another high-loss tract"
] = agg_moves_by_area(
df_moves.loc[:, ['LA/OC', 'outside'], 'high-loss'], 'dest_fips'
)
area_results[
"Number of total moves into the high-loss tracts for all in-moves that "
"don't start outside LA or Orange Counties"
] = agg_moves_by_area(
df_moves.loc[False, ['high-loss', 'LA/OC'], 'high-loss'], 'dest_fips'
)
area_results[
"Weighted average density of tracts where in-moves originated for all "
"moves that aren't within the exact same tract"
] = weighted_average_by_area(
df_moves.loc[False, :, 'high-loss'],
'dest_fips',
'orig_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Weighted average density of tracts where in-moves originated for all "
"moves that originate outside the high-loss tracts but that don't "
"originate outside LA or Orange County"
] = weighted_average_by_area(
df_moves.loc[:, 'LA/OC', 'high-loss'],
'dest_fips',
'orig_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Median density of tracts where in-moves originated for all moves that "
"aren't within the exact same tract"
] = median_by_area(
df_moves.loc[False, :, 'high-loss'],
'dest_fips',
'orig_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Median density of tracts where in-moves originated for all moves that "
"originate outside the high-loss tracts but that don't originate "
"outside LA or Orange County"
] = median_by_area(
df_moves.loc[:, 'LA/OC', 'high-loss'],
'dest_fips',
'orig_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Percent of moves in that came from lower-density places"
] = 100 * agg_moves_by_area(
filter_moves_using_fips(
df_moves.loc[False, :, 'high-loss'],
lambda orig, dest: orig < dest,
census_col_by_area(f'popdens{census_year}'),
census_col_by_area(f'popdens{census_year}')
),
'dest_fips'
) / agg_moves_by_area(
df_moves.loc[False, :, 'high-loss'], 'dest_fips'
)
area_results[
"Average change in density that resulted from a move into a high-loss "
"tract"
] = average_change_by_area(
df_moves.loc[False, :, 'high-loss'],
'dest_fips',
census_col_by_area(f'popdens{census_year}')
)
area_results[
"Interquartile range of move distance for moves that end in high-loss "
"tracts for all moves not originating in same tract"
] = agg_moves_by_area(
df_moves.loc[False, :, 'high-loss'],
'dest_fips',
calculate_iqr,
['dist'],
np.NaN
)
area_results[
"Interquartile range of move distance for moves that end in high-loss "
"tracts for all moves except those that start in another high-loss "
"tract"
] = agg_moves_by_area(
df_moves.loc[:, ['LA/OC', 'outside'], 'high-loss'],
'dest_fips',
calculate_iqr,
['dist'],
np.NaN
)
area_results[
"Interquartile range of move distance for moves that end in high-loss "
"tracts for all moves that don't start outside LA or Orange County"
] = agg_moves_by_area(
df_moves.loc[False, ['high-loss', 'LA/OC'], 'high-loss'],
'dest_fips',
calculate_iqr,
['dist'],
np.NaN
)
area_results[
"Mean move distance for moves that end in high-loss tracts for all "
"moves not originating in same tract"
] = agg_moves_by_area(
df_moves.loc[False, :, 'high-loss'],
'dest_fips',
'mean',
['dist'],
np.NaN
)
area_results[
"Mean move distance for moves that end in high-loss tracts for all "
"moves except those that start in another high-loss tract"
] = agg_moves_by_area(
df_moves.loc[:, ['LA/OC', 'outside'], 'high-loss'],
'dest_fips',
'mean',
['dist'],
np.NaN
)
area_results[
"Mean move distance for moves that end in high-loss tracts for all "
"moves that don't start outside LA or Orange County"
] = agg_moves_by_area(
df_moves.loc[False, ['high-loss', 'LA/OC'], 'high-loss'],
'dest_fips',
'mean',
['dist'],
np.NaN
)
area_results[
"An overall rate of outmigration from high-loss tracts"
] = agg_moves_by_area(df_moves.loc[False, 'high-loss', :], 'orig_fips') \
/ census_col_by_area(f'totalpop{census_year}', df_high_loss_areas)
area_results[
"An overall rate of in-migration to high-loss tracts"
] = agg_moves_by_area(df_moves.loc[False, :, 'high-loss'], 'dest_fips') \
/ census_col_by_area(f'totalpop{census_year}', df_high_loss_areas)
entire_sample_results = {}
entire_sample_results[
"Total population at beginning of the period"
] = df_census[f'totalpop{census_year}'].sum()
entire_sample_results[
"Number of total moves"
] = count_moves(df_moves)
entire_sample_results[
"Number of total moves that began and ended in the same tract"
] = count_moves(df_moves.loc[True, :, :])
entire_sample_results[
"Number of total moves that ended outside LA or Orange Counties"
] = count_moves(df_moves.loc[:, :, 'outside'])
entire_sample_results[
"Interquartile range of move distances out of high-loss tracts"
] = calculate_iqr(
df_moves.loc[:, 'high-loss', ['LA/OC', 'outside']]['dist']
)
entire_sample_results[
"Mean distance of moves out"
] = df_moves.loc[:, 'high-loss', ['LA/OC', 'outside']]['dist'].mean()
entire_sample_results[
"Share of moves that stay within tract"
] = count_moves(df_moves.loc[True, :, :]) / count_moves(df_moves)
entire_sample_results[
"Average change in density of a move"
] = (
df_moves['dest_fips'].map(census_col_by_area(f'popdens{census_year}')) \
- df_moves['orig_fips'].map(census_col_by_area(f'popdens{census_year}'))
).mean()
df_results = pd.concat(
[
result.rename(description)
for description, result in area_results.items()
],
axis='columns'
)
if export:
export_agg_results(
entire_sample_results,
create_txt_filename(False, infutor_start, infutor_end)
)
df_results.to_csv(
f'./data/infutor+census/For_High-Loss_Areas_{infutor_start}-'
f'{infutor_end}.csv'
)
if verbose:
with pd.option_context('display.max_columns', None):
print(f"\nperiod {period} results:\n")
pprint(entire_sample_results)
print(df_results[to_print])