-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroute.py
535 lines (510 loc) · 22.6 KB
/
route.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import constants
import copy
import itertools
import numpy as np
from locations import Bus, School, Stop, Student
#Returns travel time from loc1 to loc2
def trav_time(loc1, loc2):
return constants.TRAVEL_TIMES[loc1.tt_ind,
loc2.tt_ind]
memoized_timechecks = dict()
class Route:
#Encapsulated as a list of Stops in order and
#a list of Schools in order.
#It is assumed that the Schools are all visited
#after the Stops.
def __init__(self):
self.stops = []
self.schools = []
self.length = 0
self.occupants = 0
self.valid_school_orderings = []
self.max_time = constants.MAX_TIME
self.e_no_h = False
self.h_no_e = False
self.special_ed_students = set()
#Tracks whether any student has a custom time limit
self.student_time_limit = False
#If no bus is assigned, the default capacity is infinite.
#This is denoted by None.
#Otherwise, this variable should hold the relevant Bus object.
self.bus = None
self.backups = dict()
#Some approaches, e.g. Park+Kim mixed loads, are most efficiently
#implemented with the ability to back up a route's data and
#restore it.
def backup(self, identifier):
backup_obj = (copy.copy(self.stops), copy.copy(self.schools),
self.occupants, self.length,
self.max_time, copy.copy(self.valid_school_orderings),
self.special_ed_students, self.e_no_h,
self.h_no_e, self.student_time_limit,
copy.copy(self.special_ed_students))
self.backups[identifier] = backup_obj
def restore(self, identifier):
(self.stops, self.schools, self.occupants,
self.length, self.max_time, self.valid_school_orderings,
self.special_ed_students, self.e_no_h, self.h_no_e,
self.student_time_limit,
self.special_ed_students) = self.backups[identifier]
self.stops = copy.copy(self.stops)
self.schools = copy.copy(self.schools)
self.valid_school_orderings = copy.copy(self.valid_school_orderings)
self.special_ed_students = copy.copy(self.special_ed_students)
#Determine how many students have a particular need
def count_needs(self, need):
tot = 0
for stud in self.special_ed_students:
if stud.has_need(need):
tot += 1
return tot
#Inserts a stop visit at position pos in the route.
#The default position is the end.
#Only check is feasibility of school addition.
def add_stop(self, stop, pos = -1, force = False):
if not self.add_school(stop.school):
return False
#Maintain the age type information
if stop.e > 0 and stop.h == 0:
self.e_no_h = True
if stop.h > 0 and stop.e == 0:
self.h_no_e = True
for student in stop.special_ed_students:
self.special_ed_students.add(student)
if student.has_need("T"):
self.student_time_limit = True
if pos == -1:
self.stops.append(stop)
#Maintain the travel time field and occupants field
self.occupants += stop.occs*stop.ridership_probability()
self.recompute_length()
self.max_time = max(self.max_time,
constants.SLACK*trav_time(stop, stop.school))
return True
#Add the stop
self.stops = self.stops[:pos] + [stop] + self.stops[pos:]
#Maintain the relevant fields
self.recompute_length()
self.occupants += stop.occs*stop.ridership_probability()
self.max_time = max(self.max_time,
constants.SLACK*trav_time(stop, stop.school))
return True
def remove_stop(self, stop):
self.stops.remove(stop)
school = stop.school
school_still_needed = False
for other_stop in self.stops:
if other_stop.school == school:
school_still_needed = True
break
if not school_still_needed:
self.schools = copy.copy(self.schools)
self.schools.remove(school)
#If there is nothing left, our length is 0
#TODO: Figure out the right way to deal with this
if len(self.schools) == 0:
self.length = 0
return
self.enumerate_school_orderings()
recheck_time = False
for student in stop.special_ed_students:
self.special_ed_students.remove(student)
if student.has_need("T"):
self.student_time_limit = False
recheck_time = True
if recheck_time:
for stop_check in self.stops:
for student in stop_check.special_ed_students:
if student.has_need("T"):
self.student_time_limit = True
#Route will no longer be used in this case
if len(self.stops) == 0:
return
self.recompute_length()
self.recompute_occupants()
self.recompute_type_info()
self.recompute_maxtime()
def get_route_length(self):
return self.length
#Performs an insertion of a stop such that the cost is minimized.
#If the insertion is invalid in any respect, the insertion does
#not occur and the function returns False.
#Otherwise, performs the insertion and returns True.
def insert_mincost(self, stop):
self.backup("insert_mincost")
if not self.add_school(stop.school):
return False
mach = self.count_needs("M")
for stud in stop.special_ed_students:
if stud.has_need("M"):
mach += 1
if stud.has_need("F"):
#Two different stops that need to be the final stop
if self.count_needs("F") > 0:
self.restore("insert_mincost")
return False
if stud.has_need("T"):
self.student_time_limit = True
#Can't have too many students with machines
#Do allow several students if they are all at
#the same stop - seems unlikely though
if mach > 2 and len(self.stops) > 1:
self.restore("insert_mincost")
return False
if len(self.stops) > 0:
best_cost = 100000
best_ind = 0
#It is okay to insert this stop in the middle or the
#beginning as long as no student on the stop needs
#to be at the final stop.
if len(self.stops) > 0 and stop.count_needs("F") == 0:
best_cost = trav_time(stop, self.stops[0])
for i in range(len(self.stops) - 1):
cost = (trav_time(self.stops[i], stop)
+ trav_time(stop, self.stops[i + 1])
- trav_time(self.stops[i], self.stops[i + 1]))
if cost < best_cost:
best_cost = cost
best_ind = i + 1
final_cost = (trav_time(self.stops[-1], stop) +
trav_time(stop, self.schools[0]) -
trav_time(self.stops[-1], self.schools[0]))
#Can only insert at the end if no student already on
#the route needs to be at the final stop.
if final_cost < best_cost and self.count_needs("F") == 0:
self.stops.append(stop)
else:
self.stops.insert(best_ind, stop)
else:
self.stops = [stop]
for student in stop.special_ed_students:
self.special_ed_students.add(student)
#Maintain the age type information
if stop.e > 0 and stop.h == 0:
self.e_no_h = True
if stop.h > 0 and stop.e == 0:
self.h_no_e = True
self.recompute_length()
self.occupants += stop.occs*stop.ridership_probability()
self.recompute_maxtime()
if (self.length > self.max_time or
(self.student_time_limit and not self.check_special_times()) or
self.bus != None and not self.bus.can_handle(self, True)):
self.restore("insert_mincost")
return False
return True
#Checks whether adding the school would leave
#any valid orderings. If so, adds the school
#and returns True.
def add_school(self, school):
if school not in self.schools:
oldschools = self.schools
self.schools = oldschools + [school]
self.enumerate_school_orderings()
if len(self.valid_school_orderings) == 0:
self.schools = oldschools
self.enumerate_school_orderings()
return False
return True
#For students with special time limits, determine whether
#they get to school on time.
def check_special_times(self):
for ind, stop in enumerate(self.stops):
for stud in stop.students:
if stud.has_need("T"):
time_limit = stud.need_value("T")
time_elapsed = 0
for i in range(ind + 1, len(self.stops)):
time_elapsed += trav_time(self.stops[i - 1], self.stops[i])
time_elapsed += self.stops[i].extra_time()
time_elapsed += trav_time(self.stops[-1], self.schools[0])
for i in range(0, len(self.schools)):
if self.schools[i] == stop.school:
break
time_elapsed += trav_time(self.schools[i], self.schools[i + 1])
time_elapsed += constants.SCHOOL_DROPOFF_TIME
if (time_elapsed > time_limit and
(stop != self.stops[-1] or stop.school != self.schools[0])):
return False
return True
#Outputs (valid, time) where valid is true if the belltimes
#line up appropriately and time gives the amount of time
#required to use this ordering.
#valid will also be false if two of the schools are outside
#of the acceptable maximum school distance.
def time_check(self, school_perm):
if tuple(school_perm) in memoized_timechecks:
return memoized_timechecks[tuple(school_perm)]
for school1 in school_perm:
for school2 in school_perm:
if (trav_time(school1, school2) > constants.MAX_SCHOOL_DIST and
not (school1.school_identifier, school2.school_identifier) in constants.ALLOWED_SCHOOL_PAIRS):
return (False, 0)
if (school1.school_identifier, school2.school_identifier) in constants.FORBIDDEN_SCHOOL_PAIRS:
return (False, 0)
#First, check for the morning routes
time = 0
mintime = school_perm[0].earliest_dropoff
maxtime = school_perm[0].latest_dropoff
for i in range(1, len(school_perm)):
leg_time = trav_time(school_perm[i-1], school_perm[i])
#If the shcools are different, need to add dropoff time
#at the first school.
if leg_time > 0:
leg_time += constants.SCHOOL_DROPOFF_TIME
mintime += leg_time
maxtime += leg_time
time += leg_time
school_mintime = school_perm[i].earliest_dropoff
school_maxtime = school_perm[i].latest_dropoff
#Can't get to the school in time - give up
if school_maxtime < mintime:
memoized_timechecks[tuple(school_perm)] = (False, 0)
return (False, 0)
#Have to wait at the school - add the waiting time
if school_mintime > maxtime:
time += school_mintime - maxtime
mintime = max(school_mintime, mintime)
maxtime = min(school_maxtime, max(maxtime, mintime))
memoized_timechecks[tuple(school_perm)] = (True, time)
oldtime = time
#Now, check for the afternoon routes.
#We measure travel times for the morning routes, but we
#should still check feasibility of the afternoon routes.
time = 0
mintime = school_perm[0].earliest_pickup
maxtime = school_perm[0].latest_pickup
for i in range(1, len(school_perm)):
leg_time = trav_time(school_perm[i-1], school_perm[i])
if leg_time > 0:
leg_time += constants.SCHOOL_DROPOFF_TIME
mintime += leg_time
maxtime += leg_time
time += leg_time
school_mintime = school_perm[i].earliest_pickup
school_maxtime = school_perm[i].latest_pickup
#Can't get to the school in time - give up
if school_maxtime < mintime:
memoized_timechecks[tuple(school_perm)] = (False, 0)
return (False, 0)
#Have to wait at the school - add the waiting time
if school_mintime > maxtime:
time += school_mintime - maxtime
mintime = max(school_mintime, mintime)
maxtime = min(school_maxtime, max(maxtime, mintime))
return (True, oldtime)
def enumerate_school_orderings(self):
self.valid_school_orderings = []
for perm in itertools.permutations(self.schools):
result = self.time_check(perm)
if result[0]:
self.valid_school_orderings.append([list(perm), result[1]])
#Determining pickup time for wheelchair/lift students
def sped_waiting_time(self):
wheelchair_stops = set()
lift_stops = set()
for stud in self.special_ed_students:
if stud.has_need("W"):
wheelchair_stops.add(stud.stop)
if stud.has_need("L"):
lift_stops.add(stud.stop)
lift_stops = lift_stops.difference(wheelchair_stops)
return (constants.WHEELCHAIR_STOP_TIME*len(wheelchair_stops) +
constants.LIFT_STOP_TIME*len(lift_stops))
#If there is ever uncertainty about the length field, recompute length
#Important: This reorders the schools to minimize the length.
#As such, it may undo work by optimize_student_travel_times.
def recompute_length(self):
length = 0
for i in range(len(self.stops) - 1):
#Add time for wheelchair/lift
length += self.stops[i].extra_time()
length += trav_time(self.stops[i], self.stops[i+1])
length += self.stops[-1].extra_time()
best_length = 100000
for possible_schools in self.valid_school_orderings:
#Length is stop travel time plus stop to first school
#plus school travel time
possible_length = (length +
trav_time(self.stops[-1], possible_schools[0][0]) +
possible_schools[1])
if possible_length < best_length:
best_length = possible_length
self.schools = possible_schools[0]
self.length = best_length
return self.length
#In cases where we don't want to look at school reorderings, just
#recompute the length in the straightforward way.
def recompute_length_naive(self):
self.length = 0
for i in range(0, len(self.stops) - 1):
self.length += trav_time(self.stops[i], self.stops[i+1])
self.length += trav_time(self.stops[-1], self.schools[0])
for i in range(0, len(self.schools) - 1):
self.length += trav_time(self.schools[i], self.schools[i+1])
self.length += constants.SCHOOL_DROPOFF_TIME
self.length += self.sped_waiting_time()
def recompute_occupants(self):
self.occupants = 0
for stop in self.stops:
self.occupants += stop.occs*stop.ridership_probability()
def recompute_type_info(self):
self.e_no_h = False
self.h_no_e = False
for stop in self.stops:
if stop.e > 0 and stop.h == 0:
self.e_no_h = True
if stop.h > 0 and stop.e == 0:
self.h_no_e = True
def recompute_maxtime(self):
self.max_time = constants.MAX_TIME
for stop in self.stops:
self.max_time = max(self.max_time, constants.SLACK*
trav_time(stop, stop.school))
#Determines whether the route is feasible with
#respect to constraints.
def feasibility_check(self, verbose = False):
#Recompute max time
self.max_time = constants.MAX_TIME
for s in self.stops:
self.max_time = max(self.max_time,
constants.SLACK*trav_time(s, s.school))
#Too long
self.enumerate_school_orderings()
self.recompute_length()
if self.length > self.max_time:
if verbose:
print("Too long")
return False
if self.student_time_limit and not self.check_special_times():
if verbose:
print("Student's custom time limit is violated")
return False
#School not visited or mixed student types
e_no_h = False
h_no_e = False
for s in self.stops:
e_found = False
h_found = False
for student in s.students:
if student.type == 'E':
e_found = True
if student.type == 'H':
h_found = True
if student.school not in self.schools:
if verbose:
print("School not visited")
return False
if e_found and not h_found:
e_no_h = True
if h_found and not e_found:
h_no_e = True
if e_no_h and h_no_e:
if verbose:
print("Student age types not feasible")
return False
#Too many students and there is a bus assigned and
#there are multiple stops (sometimes, a single stop
#has too many students for any bus to take, so we
#assume that stop is handled alone)
if (self.bus != None and
not self.bus.can_handle(self, True) and
len(self.stops) > 1):
if verbose:
print("Too full")
return False
#Now test mixed load bell time feasibility
result = self.time_check(self.schools)
if not result[0]:
if verbose:
print("Bell times contradict")
return False
#Next, check special ed feasibility.
#Adult and individual supervision are already accounted for
#in capacity check.
#Modified travel time is already accounted for during
#computation of max travel time.
#Maximum number of machine students is 2
machine_students = 0
wheelchair_students = 0
lift_needed = False
for stud in self.special_ed_students:
if stud.has_need("M"):
machine_students += 1
if stud.has_need("W"):
wheelchair_students += 1
lift_needed = True
if stud.has_need("L"):
lift_needed = True
if stud.has_need("F"):
if stud.stop != self.stops[-1]:
if verbose:
print("A student who needs to be the last stop is on an earlier stop")
return False
if machine_students > 2 and self.stops > 1:
if verbose:
print("Too many students who need machines")
return False
if lift_needed and self.bus != None and not self.bus.lift:
if verbose:
print("Lift is needed, but the bus has no lift")
return False
if self.bus != None and wheelchair_students > self.bus.num_wheelchair_max:
if verbose:
print("Not enough wheelchair spots on bus")
print(wheelchair_students)
print(self.bus.num_wheelchair_max)
print(self.bus.capacity)
return False
return True
#Check whether it is feasible to add more students of type
#stud_type to the route given the bus
def can_add(self, bus, stud_type, num_students = 1):
to_add = [(stud_type == "E")*num_students,
(stud_type == "M")*num_students,
(stud_type == "H")*num_students]
return self.is_acceptable(bus, to_add)
#Returns a list of travel times from stop to
#school, one per student.
def student_travel_times(self):
out = []
for i in range(len(self.stops)):
this_stop_time = 0
for j in range(i, len(self.stops) - 1):
this_stop_time += trav_time(self.stops[j], self.stops[j+1])
#Add wheelchair/lift time
this_stop_time += self.stops[j+1].extra_time()
this_stop_time += trav_time(self.stops[-1], self.schools[0])
j = 0
while self.stops[i].school != self.schools[j]:
this_stop_time += trav_time(self.schools[j], self.schools[j+1])
#If they are different schools, need to include dropoff time.
if trav_time(self.schools[j], self.schools[j+1]) > 0.1:
this_stop_time += constants.SCHOOL_DROPOFF_TIME
j += 1
for stud in range(self.stops[i].occs):
out.append(this_stop_time)
return out
#Reorders the schools such that the mean student
#travel time is minimized while still keeping
#the total route length within allowable bounds.
def optimize_student_travel_times(self):
length = 0
for i in range(len(self.stops) - 1):
length += trav_time(self.stops[i], self.stops[i+1])
best_trav_time = np.sum(self.student_travel_times())
for possible_schools in self.valid_school_orderings:
#Length is stop travel time plus stop to first school
#plus school travel time
possible_length = (length +
trav_time(self.stops[-1], possible_schools[0][0]) +
possible_schools[1])
if possible_length <= self.max_time:
tot_time = np.sum(self.student_travel_times())
if tot_time < best_trav_time - .0000000001:
if constants.VERBOSE:
print("Saved " + str(best_trav_time-tot_time) +
" student travel time.")
best_trav_time = tot_time
self.schools = possible_schools[0]
return best_trav_time