-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
69 lines (54 loc) · 2.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from jnt.isas.taxo import TaxonomyFeatures, TaxonomyResources
from jnt.common import ensure_dir
from jnt.isas.supervised import SuperTaxi, METHODS
from traceback import format_exc
from os.path import join
import itertools
import argparse
RES_DIR = "./resources"
TEST_GRIDSEARCH = True
train_relations_fpath = join(RES_DIR,"relations.csv")
isa_fpaths = [join(RES_DIR,"en_ma.csv.gz")]
freq_fpaths =[""]
def findsubsets(S,m):
return set(itertools.combinations(S, m))
def run(output_dir, feature_num, mode):
feature_num = int(feature_num)
taxo_res = TaxonomyResources(freq_fpaths, isa_fpaths)
taxo_features = TaxonomyFeatures(taxo_res, relations_fpath=train_relations_fpath)
ensure_dir(output_dir)
features = ["hyper_in_hypo_i","hypo2hyper_substract", "freq_substract", "in_weight_substract", "length_substract",
"hypo2hyper_s_substract","hypo2hyper_max2_substract"]
features = features[:feature_num]
if mode == "gridsearch":
# grid search is only supported for SVC
method = "SVC"
hc = SuperTaxi(join(output_dir, "SVC-grid-search"), method="SVC", features=features, overwrite=True)
clf = hc.grid_search_svc(taxo_features.relations, test=TEST_GRIDSEARCH)
return
for method in METHODS:
try:
classifier_dir = join(output_dir, method)
print("\n", method.upper(), "\n", "="*50)
hc = SuperTaxi(classifier_dir, method=method, features=features, overwrite=True)
if mode == "train":
clf = hc.train(taxo_features.relations)
hc._print_clf_info()
elif mode == "cv":
hc.crossval(taxo_features.relations)
else:
print("Error: unrecognised mode %s" % mode)
except:
print(format_exc())
def main():
parser = argparse.ArgumentParser(description="Apply classifiers to the trial data.")
parser.add_argument('output_dir', help="Output directory where classifiers will be saved.")
parser.add_argument('feature_num', help='Number of features')
parser.add_argument('mode', type=str, default='simple', choices=['train','cv','gridsearch'], help="Mode of the system.")
args = parser.parse_args()
print "Output directory: ", args.output_dir
print "Features number: ", args.feature_num
print "Mode: ", args.mode
run(args.output_dir, args.feature_num, args.mode)
if __name__ == '__main__':
main()