-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_test.py
141 lines (119 loc) · 4.6 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from boda.models import YolactConfig, YolactModel
from boda.models.feature_extractor import resnet50, resnet101
# from boda.lib.torchinfo import summary
from boda.lib.torchsummary import summary
import torch
config = YolactConfig(num_classes=80)
model = YolactModel(config, backbone=resnet101()).to('cuda')
model.train()
print(model)
# print(summary(model, input_size=(16, 3, 550, 550), verbose=0))
print(summary(model, input_data=(3, 550, 550), verbose=0))
# model.load_weights('cache/yolact-base.pth')
from boda.models import PostprocessYolact
from PIL import Image
from torchvision import transforms
image = Image.open('test6.jpg')
model = YolactModel.from_pretrained('yolact-base').cuda()
model.eval()
aug = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
# transforms.Normalize([0.406, 0.456, 0.485], [0.225, 0.224, 0.229])
])
outputs = model([aug(image).cuda()])
print(outputs.keys())
post = PostprocessYolact()
outputs = post(outputs, outputs['image_sizes'])
print(outputs[0]['boxes'])
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from skimage.measure import find_contours
import adjustText
np_image = np.array(image)
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
# for box in outputs[0]['boxes']:
# # box = list(map(int, boxes[j, :]))
# x1, y1, x2, y2 = box.detach().cpu().numpy()
# # score = scores[j]
# # label = labels[j]
# cv2.rectangle(np_image, (x1, y1), (x2, y2), (0, 0, 255), thickness=1)
plt.imshow(image)
ax = plt.gca()
threshold = 0
COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush')
COLORS = {
1: 'deepskyblue',
2: 'orangered',
3: 'yellowgreen',
4: 'darkorange',
5: 'chocolate',
6: 'slategrey',
7: 'darkgoldenrod',
8: 'purple',
9: 'saddlebrown',
10: 'olive',
}
for output in outputs:
boxes = output['boxes']
scores = output['scores']
labels = output['labels']
masks = output['masks']
print(scores)
for i, box in enumerate(boxes):
x1, y1, x2, y2 = box.detach().cpu().numpy()
score = scores[i].detach().cpu().numpy()
label = labels[i].detach().cpu().numpy()
mask = masks[i].detach().cpu().numpy().astype(np.int64)
color = COLORS[(label+1) % 11]
contours = find_contours(mask, 0.5)
if score >= threshold:
cx = x2 - x1
cy = y2 - y1
ax.text(x1, y1, f"{COCO_CLASSES[label]}", c='black', size=8, va='bottom', ha='left', alpha=0.5)
rect = patches.Rectangle(
(x1, y1),
cx, cy,
linewidth=1,
edgecolor=color,
facecolor='none'
)
ax.add_patch(rect)
## contours
for contour in contours:
shapes = []
for point in contour:
shapes.append([int(point[1]), int(point[0])])
polygon_edge = patches.Polygon(
(shapes),
edgecolor=color,
facecolor='none',
linewidth=1,
fill=False,
)
polygon_fill = patches.Polygon(
(shapes),
alpha=0.5,
edgecolor='none',
facecolor=color,
fill=True
)
ax.add_patch(polygon_edge)
ax.add_patch(polygon_fill)
plt.axis('off')
plt.savefig('test.jpg' ,dpi=100, bbox_inches='tight', pad_inches=0)