forked from PGSmall/jittor-PGSmall-LUSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pixel_finetuning.py
230 lines (201 loc) · 7.76 KB
/
main_pixel_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import math
import os
import shutil
import time
import setproctitle
from logging import getLogger
import numpy as np
import jittor as jt
import jittor.nn as nn
jt.flags.use_cuda = 1
import jittor.transform as transforms
import src.pseudo_transforms as custom_transforms
import src.resnet as resnet_models
from options import getOption
from src.singlecropdataset import PseudoLabelDataset
from src.utils import (AverageMeter, accuracy, fix_random_seeds,
initialize_exp,
restart_from_checkpoint)
logger = getLogger()
parser = getOption()
def main():
global args
args = parser.parse_args()
fix_random_seeds(args.seed)
logger, training_stats = initialize_exp(args, 'epoch', 'loss')
# build data
normalize = transforms.ImageNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = PseudoLabelDataset(
args.data_path,
custom_transforms.Compose([
custom_transforms.RandomResizedCropSemantic(args.img_size),
custom_transforms.RandomHorizontalFlipSemantic(),
custom_transforms.ToTensorSemantic(),
normalize,
]),
pseudo_path=args.pseudo_path,
)
train_loader = train_dataset.set_attrs(
batch_size=args.batch_size,
num_workers=args.workers,
drop_last=True,
shuffle=True
)
logger.info('Building data done with {} images loaded.'.format(
len(train_dataset)))
# build model
if args.arch in resnet_models.__dict__.keys():
model = resnet_models.__dict__[args.arch](
hidden_mlp=0,
output_dim=0,
nmb_prototypes=0,
num_classes=args.num_classes,
train_mode='finetune')
else:
raise NotImplementedError()
# for n, p in model.named_parameters():
# p.assign(p.mpi_broadcast())
# loading pretrained weights
checkpoint = jt.load(args.pretrained)[args.checkpoint_key]
for k in list(checkpoint.keys()):
if k not in model.state_dict().keys():
del checkpoint[k]
model.load_state_dict(checkpoint)
logger.info("Loaded pretrained weights '{}'".format(args.pretrained))
# copy model to GPU
if jt.rank == 0:
logger.info(model)
logger.info('Building model done.')
# build optimizer
if args.optim == 'sgd':
optimizer = jt.optim.SGD(
model.parameters(),
lr=args.base_lr,
momentum=0.9,
weight_decay=args.wd,
)
elif args.optim == 'adamw':
optimizer = jt.optim.AdamW(
model.parameters(),
lr=args.base_lr,
eps=1e-8,
betas=(0.9, 0.999)
)
else:
raise NotImplementedError()
warmup_lr_schedule = np.linspace(args.start_warmup, args.base_lr,
len(train_loader) * args.warmup_epochs)
iters = np.arange(len(train_loader) * (args.epochs - args.warmup_epochs))
cosine_lr_schedule = \
np.array([args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 +
math.cos(
math.pi * t /
(len(train_loader) * (args.epochs - args.warmup_epochs))
)
)
for t in iters])
lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule))
logger.info('Building optimizer done.')
# optionally resume from a checkpoint
to_restore = {'epoch': 0}
restart_from_checkpoint(
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
run_variables=to_restore,
state_dict=model,
optimizer=optimizer
)
start_epoch = to_restore['epoch']
# loss function
criterion = nn.CrossEntropyLoss()
for epoch in range(start_epoch, args.epochs):
# train the network for one epoch
logger.info('============ Starting epoch %i ... ============' % epoch)
# train the network
scores = train(train_loader, model, optimizer, criterion, epoch,
lr_schedule)
training_stats.update(scores)
# save checkpoints
if jt.rank == 0:
save_dict = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
jt.save(
save_dict,
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
)
if epoch % args.checkpoint_freq == 0 or epoch == args.epochs - 1:
shutil.copyfile(
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
os.path.join(args.dump_checkpoints,
'ckp-' + str(epoch) + '.pth.tar'),
)
jt.sync_all()
def train(train_loader, model, optimizer, criterion, epoch, lr_schedule):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
model.train()
end = time.time()
for it, (inputs, labels) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# update learning rate
iteration = epoch * len(train_loader) + it
for param_group in optimizer.param_groups:
if 'lr_scale' in param_group:
param_group['lr'] = lr_schedule[iteration] * param_group['lr_scale']
else:
param_group['lr'] = lr_schedule[iteration]
# ============ forward step ... ============
labels = labels[:, 1, :, :] * 256 + labels[:, 0, :, :]
labels = labels.long()
output = model(inputs)
labels = nn.interpolate(labels.float().unsqueeze(1),
scale_factor=args.finetune_scale_factor,
mode='nearest').long().squeeze(1)
output = nn.interpolate(output,
size=(labels.shape[1], labels.shape[2]),
mode='bilinear')
c = output.shape[1]
loss = criterion(output, labels)
(acc1, ) = accuracy(
output.permute(0, 2, 3, 1).contiguous().view(-1, c),
labels.view(-1))
# ============ backward and optim step ... ============
optimizer.step(loss)
# ============ misc ... ============
losses.update(loss.item(), inputs[0].size(0))
acc.update(acc1.item(), inputs[0].size(0))
batch_time.update(time.time() - end)
end = time.time()
if jt.rank == 0 and it % 50 == 0:
logger.info('Epoch: [{0}][{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {acc1.val:.2f} ({acc1.avg:.2f})\t'
'Lr: {lr:.8f}'.format(
epoch,
it,
batch_time=batch_time,
data_time=data_time,
loss=losses,
lr=optimizer.param_groups[-1]['lr'],
acc1=acc,
))
return (epoch, losses.avg)
if __name__ == '__main__':
# set name
setproctitle.setproctitle("PASS-SAM")
main()