-
Notifications
You must be signed in to change notification settings - Fork 403
/
Copy pathmain.py
executable file
·140 lines (113 loc) · 5.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
from __future__ import print_function
import matplotlib; matplotlib.use('Agg')
import os, numpy as np, time, sys, argparse
from AB3DMOT_libs.utils import Config, get_subfolder_seq, initialize
from AB3DMOT_libs.io import load_detection, get_saving_dir, get_frame_det, save_results, save_affinity
from scripts.post_processing.combine_trk_cat import combine_trk_cat
from xinshuo_io import mkdir_if_missing, save_txt_file
from xinshuo_miscellaneous import get_timestring, print_log
def parse_args():
parser = argparse.ArgumentParser(description='AB3DMOT')
parser.add_argument('--dataset', type=str, default='nuScenes', help='KITTI, nuScenes')
parser.add_argument('--split', type=str, default='', help='train, val, test')
parser.add_argument('--det_name', type=str, default='', help='pointrcnn')
args = parser.parse_args()
return args
def main_per_cat(cfg, cat, log, ID_start):
# get data-cat-split specific path
result_sha = '%s_%s_%s' % (cfg.det_name, cat, cfg.split)
det_root = os.path.join('./data', cfg.dataset, 'detection', result_sha)
subfolder, det_id2str, hw, seq_eval, data_root = get_subfolder_seq(cfg.dataset, cfg.split)
trk_root = os.path.join(data_root, 'tracking')
save_dir = os.path.join(cfg.save_root, result_sha + '_H%d' % cfg.num_hypo); mkdir_if_missing(save_dir)
# create eval dir for each hypothesis
eval_dir_dict = dict()
for index in range(cfg.num_hypo):
eval_dir_dict[index] = os.path.join(save_dir, 'data_%d' % index); mkdir_if_missing(eval_dir_dict[index])
# loop every sequence
seq_count = 0
total_time, total_frames = 0.0, 0
for seq_name in seq_eval:
seq_file = os.path.join(det_root, seq_name+'.txt')
seq_dets, flag = load_detection(seq_file) # load detection
if not flag: continue # no detection
# create folders for saving
eval_file_dict, save_trk_dir, affinity_dir, affinity_vis = \
get_saving_dir(eval_dir_dict, seq_name, save_dir, cfg.num_hypo)
# initialize tracker
tracker, frame_list = initialize(cfg, trk_root, save_dir, subfolder, seq_name, cat, ID_start, hw, log)
# loop over frame
min_frame, max_frame = int(frame_list[0]), int(frame_list[-1])
for frame in range(min_frame, max_frame + 1):
# add an additional frame here to deal with the case that the last frame, although no detection
# but should output an N x 0 affinity for consistency
# logging
print_str = 'processing %s %s: %d/%d, %d/%d \r' % (result_sha, seq_name, seq_count, \
len(seq_eval), frame, max_frame)
sys.stdout.write(print_str)
sys.stdout.flush()
# tracking by detection
dets_frame = get_frame_det(seq_dets, frame)
since = time.time()
results, affi = tracker.track(dets_frame, frame, seq_name)
total_time += time.time() - since
# saving affinity matrix, between the past frame and current frame
# e.g., for 000006.npy, it means affinity between frame 5 and 6
# note that the saved value in affinity can be different in reality because it is between the
# original detections and ego-motion compensated predicted tracklets, rather than between the
# actual two sets of output tracklets
save_affi_file = os.path.join(affinity_dir, '%06d.npy' % frame)
save_affi_vis = os.path.join(affinity_vis, '%06d.txt' % frame)
if (affi is not None) and (affi.shape[0] + affi.shape[1] > 0):
# save affinity as long as there are tracklets in at least one frame
np.save(save_affi_file, affi)
# cannot save for visualization unless both two frames have tracklets
if affi.shape[0] > 0 and affi.shape[1] > 0:
save_affinity(affi, save_affi_vis)
# saving trajectories, loop over each hypothesis
for hypo in range(cfg.num_hypo):
save_trk_file = os.path.join(save_trk_dir[hypo], '%06d.txt' % frame)
save_trk_file = open(save_trk_file, 'w')
for result_tmp in results[hypo]: # N x 15
save_results(result_tmp, save_trk_file, eval_file_dict[hypo], \
det_id2str, frame, cfg.score_threshold)
save_trk_file.close()
total_frames += 1
seq_count += 1
for index in range(cfg.num_hypo):
eval_file_dict[index].close()
ID_start = max(ID_start, tracker.ID_count[index])
print_log('%s, %25s: %4.f seconds for %5d frames or %6.1f FPS, metric is %s = %.2f' % \
(cfg.dataset, result_sha, total_time, total_frames, total_frames / total_time, \
tracker.metric, tracker.thres), log=log)
return ID_start
def main(args):
# load config files
config_path = './configs/%s.yml' % args.dataset
cfg, settings_show = Config(config_path)
# overwrite split and detection method
if args.split is not '': cfg.split = args.split
if args.det_name is not '': cfg.det_name = args.det_name
# print configs
time_str = get_timestring()
log = os.path.join(cfg.save_root, 'log/log_%s_%s_%s.txt' % (time_str, cfg.dataset, cfg.split))
mkdir_if_missing(log); log = open(log, 'w')
for idx, data in enumerate(settings_show):
print_log(data, log, display=False)
# global ID counter used for all categories, not start from 1 for each category to prevent different
# categories of objects have the same ID. This allows visualization of all object categories together
# without ID conflicting, Also use 1 (not 0) as start because MOT benchmark requires positive ID
ID_start = 1
# run tracking for each category
for cat in cfg.cat_list:
ID_start = main_per_cat(cfg, cat, log, ID_start)
# combine results for every category
print_log('\ncombining results......', log=log)
combine_trk_cat(cfg.split, cfg.dataset, cfg.det_name, 'H%d' % cfg.num_hypo, cfg.num_hypo)
print_log('\nDone!', log=log)
log.close()
if __name__ == '__main__':
args = parse_args()
main(args)