-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate_ddd_no_physics.py
125 lines (97 loc) · 5.51 KB
/
evaluate_ddd_no_physics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Evaluate the data driven detector attack identification without physics model
"""
from utils.load_data import load_case, load_measurement, load_load_pv, load_dataset
from models.model import LSTM_AE
from models.evaluation import Evaluation
import torch
from configs.nn_setting import nn_setting
from configs.config import sys_config, save_metric
import numpy as np
from tqdm import tqdm
from models.dataset import scaler
# Load cases, measurement, and load
case_class = load_case()
z_noise_summary, v_est_summary = load_measurement()
load_active, load_reactive, pv_active_, pv_reactive_ = load_load_pv()
test_dataloader_scaled, test_dataloader_unscaled, valid_dataloader_scaled, valid_dataloader_unscaled = load_dataset()
lstm_ae = LSTM_AE()
lstm_ae.load_state_dict(torch.load(nn_setting['model_path'], map_location=torch.device(nn_setting['device'])))
dd_detector = Evaluation(case_class=case_class) # Instance the data-driven detector
scaler_ = scaler() # Instance the scaler class
print(f'Quantile: {dd_detector.quantile[dd_detector.quantile_idx]}')
print(f'Threshold: {dd_detector.ae_threshold[dd_detector.quantile_idx]}')
# Attack list
ang_no_list = [1,2,3]
mag_no = 0
ang_str_list = [0.2,0.3]
mag_str = 0
recover_deviation = {} # The difference between recovered state phase angle and the ground truth state phase angle (before attack)
pre_deviation = {} # Difference by using the previous state phase angle
ite_summary = {} # The number of iterations in recovery
recover_time = {} # Summary of recovery time
residual_bdd = {} # The bdd residual of the recovered measurement
residual_ddd = {}
# Attack and recovery (without physics model)
for ang_no in ang_no_list:
for ang_str in ang_str_list:
recover_deviation[f'{ang_no,ang_str}'] = []
pre_deviation[f'{ang_no,ang_str}'] = []
ite_summary[f'{ang_no,ang_str}'] = []
recover_time[f'{ang_no,ang_str}'] = []
residual_bdd[f'{ang_no,ang_str}'] = []
residual_ddd[f'{ang_no,ang_str}'] = []
for idx_, (idx, input, v_est_pre, v_est_last) in tqdm(enumerate(test_dataloader_unscaled)):
# batch size is one
if idx_ >= 200:
# total number of samples
break
# The dataloader is shuffled
# idx_: the index of sample
# idx: the actual index in the test dataset
# input: (1,sample_length,feature_size)
# v_est_pre and v_est_last: (1, no_bus) -> (no_bus,)
# Convert format
v_est_pre = v_est_pre.flatten()
v_est_last = v_est_last.flatten() # The ground truth state
# generate attack
z_att_noise, v_att_est_last = case_class.gen_fdi_att_dd(z_noise=input, v_est_last=v_est_last,
ang_no=ang_no, mag_no=mag_no,
ang_str=ang_str, mag_str=mag_str)
v_att_est_last = torch.from_numpy(v_att_est_last)
# scale for the input of the neural network
z_att_noise_scale = scaler_(z_att_noise)
encoded, decoded, loss_lattent, loss_recons = dd_detector.evaluate(z_att_noise_scale)
if loss_recons <= dd_detector.ae_threshold[dd_detector.quantile_idx]:
# There is no attack
continue
else:
pass
# recovery
z_recover, loss_recover_summary, recover_time_ = dd_detector.recover_no_physics(
attack_batch = z_att_noise, # unscaled attack signal
)
residual_ddd[f'{ang_no,ang_str}'].append(loss_recover_summary[-1])
# do state estimation on the recovered measurement
z_recover = z_recover.flatten().unsqueeze(-1).detach().cpu().numpy()
vang_ref = torch.angle(v_est_last).detach().cpu().numpy().flatten()[case_class.ref_index[0]]
vmag_ref = torch.abs(v_est_last).detach().cpu().numpy().flatten()[case_class.ref_index[0]]
v_recover_est = case_class.ac_se_pypower(z_recover, vang_ref, vmag_ref)
residual_recover_ = case_class.bdd_residual(z_noise=z_recover, v_est = v_recover_est)
residual_bdd[f'{ang_no,ang_str}'].append(residual_recover_)
ite_summary[f'{ang_no,ang_str}'].append(len(loss_recover_summary))
recover_time[f'{ang_no,ang_str}'].append(recover_time_)
vang_recover = np.angle(v_recover_est)
vang_pre = np.angle(v_est_pre.numpy())
vang_true = np.angle(v_est_last.numpy())
recover_deviation[f'{ang_no,ang_str}'].append(np.linalg.norm(vang_true - vang_recover,2)) # L2 norm
pre_deviation[f'{ang_no,ang_str}'].append(np.linalg.norm(vang_true - vang_pre,2))
save_metric(address = f'metric/{sys_config["case_name"]}/metric_ddd_no_physics_{nn_setting["recover_lr"]}_{nn_setting["beta_real"]}_{nn_setting["beta_imag"]}_{nn_setting["max_step_size"]}_{nn_setting["min_step_size"]}.npy',
# Data-driven Detector
recover_deviation = recover_deviation,
pre_deviation = pre_deviation,
ite_summary = ite_summary,
recover_time = recover_time,
residual_bdd = residual_bdd,
residual_ddd = residual_ddd
)