-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_certify.py
137 lines (109 loc) · 5.4 KB
/
exp_certify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
experiment for certified attack with MILP formulation
"""
if __name__ == "__main__":
import json
import torch
import numpy as np
import random
import argparse
from tqdm import tqdm
import cvxpy as cp
from utils.dataset import MyDataset
from utils.certify import input_bound_clamp, return_cost, matrix_kkt, form_certify
from helper import return_operator, return_nn_model
from utils.net import NN_SPO
import matplotlib.pyplot as plt
argparser = argparse.ArgumentParser()
argparser.add_argument('-c', '--case_name', type = str, default = 'case14')
argparser.add_argument('-t', '--train_method', type = str)
argparser.add_argument('--eps_input', type = float)
args = argparser.parse_args()
with open("config.json") as f:
config = json.load(f)
print(config['nn'])
random_seed = config['random_seed']
fix_first_b = config['fix_first_b']
feature_size = config['nn']['feature_size']
fixed_feature = config['attack']['fixed_feature']
flexible_feature = list(set(np.arange(feature_size)) - set(fixed_feature))
certify_no = config['attack']['certify_no']
is_scale = config['is_scale']
multirun_no = config['attack']['multirun_no']
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
train_dataset = MyDataset(case_name = args.case_name, mode = "train")
test_dataset = MyDataset(case_name = args.case_name, mode = "test")
operator = return_operator(args.case_name)
nn = return_nn_model(is_load = True,
train_method = args.train_method,
with_relu = True) # with relu so that the forecast is always positive
if is_scale:
mean = train_dataset.target_mean
std = train_dataset.target_std
else:
mean = 0
std = 1
net_spo = NN_SPO(model = nn, operator = operator, mean = mean, std = std, fix_first_b = fix_first_b)
print('nn layers:')
for layer in nn:
print(layer)
feature_all = train_dataset.feature
target_all = train_dataset.target
print('feature shape', feature_all.shape, target_all.shape)
print('flexible feature:', flexible_feature)
random_index = np.random.choice(len(feature_all), certify_no, replace = False)
print('random index:', random_index)
feature_selected = feature_all[random_index]
target_selected = target_all[random_index]
print("feature shape:", feature_selected.shape)
stat = np.load(f'data/data_{args.case_name}/climate_data_stats.npy', allow_pickle = True).item()
min_vector = np.concatenate([stat[i]['min'] for i in stat.keys()])
max_vector = np.concatenate([stat[i]['max'] for i in stat.keys()])
# milp objective-based attack
for idx in tqdm(random_index):
feature = feature_all[idx:idx+1]
true_load = target_all[idx]
forecast_load = nn(feature).detach().numpy()
# clean cost
clean_cost = return_cost(feature, true_load, nn, operator)
# certified attack
feature_min, feature_max = input_bound_clamp(feature, max_eps_input=args.eps_input,
flexible_feature=flexible_feature)
assert torch.all(feature_min[:, fixed_feature] == feature_max[:, fixed_feature])
stage_one_prob = operator.stage_one_decision()
stage_one_standard_form = matrix_kkt(stage_one_prob)
stage_two_prob = operator.stage_two_decision(true_load)
stage_two_standard_form = matrix_kkt(stage_two_prob)
prob, z = form_certify(model = nn, initial_bounds=(feature_min, feature_max), standard_form1=stage_one_standard_form,
standard_form2=stage_two_standard_form, M = 5e4)
prob.solve(solver = cp.GUROBI, verbose = False)
cost_obj = prob.value
assert np.allclose(z[0].value[fixed_feature], feature[0][fixed_feature].numpy())
assert np.all(z[0].value[flexible_feature] <= feature_max[0][flexible_feature].numpy() + 1e-3)
assert np.all(z[0].value[flexible_feature] >= feature_min[0][flexible_feature].numpy() - 1e-3)
# check the result
cost_obj_ = return_cost(torch.from_numpy(z[0].value).float(), true_load, nn, operator)
print('clean cost: ', clean_cost, 'objective-based attack: ', cost_obj, cost_obj_)
"""
the following code is only for visualization
"""
# # unscale
# attack_feature = z[0].value[flexible_feature] * (max_vector - min_vector) + min_vector
# normal_feature = feature[0][flexible_feature].numpy() * (max_vector - min_vector) + min_vector
# plt.figure()
# plt.plot(attack_feature)
# plt.plot(normal_feature)
# plt.show()
# plt.savefig(f'attack_feature_{idx}.pdf')
# temperature_attack = attack_feature[[i for i in range(0, len(attack_feature), 6)]]
# temperature_normal = normal_feature[[i for i in range(0, len(normal_feature), 6)]]
# print('attack temperature:', temperature_attack)
# print('normal temperature:', temperature_normal)
# print('attacked feature:', attack_feature[:6])
# print('normal feature:', normal_feature[:6])
# load_normal = nn(feature).detach().numpy()
# load_attack = nn(torch.from_numpy(z[0].value).float()[None,:]).detach().numpy()
# print('load normal:', load_normal.sum())
# print('load attack:', load_attack.sum())